無(wú)線傳感器網(wǎng)絡(luò)中英文對(duì)照外文翻譯文獻(xiàn)_第1頁(yè)
無(wú)線傳感器網(wǎng)絡(luò)中英文對(duì)照外文翻譯文獻(xiàn)_第2頁(yè)
無(wú)線傳感器網(wǎng)絡(luò)中英文對(duì)照外文翻譯文獻(xiàn)_第3頁(yè)
無(wú)線傳感器網(wǎng)絡(luò)中英文對(duì)照外文翻譯文獻(xiàn)_第4頁(yè)
無(wú)線傳感器網(wǎng)絡(luò)中英文對(duì)照外文翻譯文獻(xiàn)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE1中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)原文:Distributedlocalizationinwirelesssensornetworks:aquantitativecomparisonABSTRACTThispaperstudiestheproblemofdeterminingthenodelocationsinad-hocsensornetworks.Wecomparethreedistributedlocalizationalgorithms(Ad-hocpositioning,Robustpositioning,andN-hopmultilateration)onasinglesimulationplatform.Thealgorithmsshareacommon,three-phasestructure:(1)determinenode–anchordistances,(2)computenodepositions,and(3)optionallyrefinethepositionsthroughaniterativeprocedure.Wepresentadetailedanalysiscomparingthevariousalternativesforeachphase,aswellasahead-to-headcomparisonofthecompletealgorithms.Themainconclusionisthatnosinglealgorithmperformsbest;whichalgorithmistobepreferreddependsontheconditions(rangeerrors,connectivity,anchorfraction,etc.).Ineachcase,however,thereissignificantroomforimprovingaccuracyand/orincreasingcoverage1INTRODUCTIONWirelesssensornetworksholdthepromiseofmanynewapplicationsintheareaofmonitoringandcontrol.Examplesincludetargettracking,intrusiondetection,wildlifehabitatmonitoring,climatecontrol,anddisastermanagement.Theunderlyingtechnologythatdrivestheemergenceofsensorapplicationsistherapiddevelopmentintheintegrationofdigitalcircuitry,whichwillbringussmall,cheap,autonomoussensornodesinthenearfuture.Newtechnologyoffersnewopportunities,butitalsointroducesnewproblems.Thisisparticularlytrueforsensornetworkswherethecapabilitiesofindividualnodesareverylimited.Hence,collaborationbetweennodesisrequired,butenergyconservationisamajorconcern,whichimpliesthatcommunicationshouldbeminimized.Theseconflictingobjectivesrequireunorthodoxsolutionsformanysituations.ArecentsurveybyAkyildizetal.discussesalonglistofopenresearchissuesthatmustbeaddressedbeforesensornetworkscanbecomewidelydeployed.Theproblemsrangefromthephysicallayer(low-powersensing,processing,andcommunicationhardware)allthewayuptotheapplicationlayer(queryanddatadisseminationprotocols).Inthispaperweaddresstheissueoflocalizationinad-hocsensornetworks.Thatis,wewanttodeterminethelocationofindividualsensornodeswithoutrelyingonexternalinfrastructure(basestations,satellites,etc.).Thelocalizationproblemhasreceivedconsiderableattentioninthepast,asmanyapplicationsneedtoknowwhereobjectsorpersonsare,andhencevariouslocationserviceshavebeencreated.Undoubtedly,theGlobalPositioningSystem(GPS)isthemostwell-knownlocationserviceinusetoday.TheapproachtakenbyGPS,however,isunsuitableforlow-cost,ad-hocsensornetworkssinceGPSisbasedonextensiveinfrastructure(i.e.,satellites).Likewisesolutionsdevelopedintheareaofroboticandubiquitouscomputingaregenerallynotapplicableforsensornetworksastheyrequiretoomuchprocessingpowerandenergy.Recentlyanumberoflocalizationsystemshavebeenproposedspecificallyforsensornetworks.Weareinterestedintrulydistributedalgorithmsthatcanbeemployedonlarge-scalead-hocsensornetworks(100+nodes).Suchalgorithmsshouldbe:?self-organizing(i.e.,donotdependonglobalinfrastructure),?robust(i.e.,betoleranttonodefailuresandrangeerrors),?energyefficient(i.e.,requirelittlecomputationand,especially,communication).Theserequirementsimmediatelyruleoutsomeoftheproposedlocalizationalgorithmsforsensornetworks.Wecarriedoutathoroughsensitivityanalysisonthreealgorithmsthatdomeettheaboverequirementstodeterminehowwelltheyperformundervariousconditions.Inparticular,westudiedtheimpactofthefollowingparameters:rangeerrors,connectivity(density),andanchorfraction.Thesealgorithmsdifferintheirpositionaccuracy,networkcoverage,inducednetworktraffic,andprocessorload.Giventhe(slightly)differentdesignobjectivesforthethreealgorithms,itisnosurprisethateachalgorithmoutperformstheothersunderaspecificsetofconditions.Undereachcondition,however,eventhebestalgorithmleavesmuchroomforimprovingaccuracyand/orincreasingcoverage.Themaincontributionsofourworkdescribedinthispaperare:?weidentifyacommon,three-phase,structureinthedistributedlocalizationalgorithms.?weidentifyagenericoptimizationapplicabletoallalgorithms.?weprovideadetailedcomparisononasingle(simulation)platform.?weshowthatthereisnoalgorithmthatperformsbest,andthatthereexistsroomforimprovementinmostcases.Section2discussestheselection,genericstructure,andoperationofthreedistributedlocalizationalgorithmsforlarge-scalead-hocsensornetworks.Thesealgorithmsarecomparedonasimulationplatform,whichisdescribedinSection3.Section4presentsintermediateresultsfortheindividualphases,whileSection5providesadetailedoverallcomparisonandanin-depthsensitivityanalysis.Finally,wegiveconclusionsinSection6.2LOCALIZATIONALGORITHMSBeforediscussingdistributedlocalizationindetail,wefirstoutlinethecontextinwhichthesealgorithmshavetooperate.Afirstconsiderationisthattherequirementforsensornetworkstobeself-organizingimpliesthatthereisnofinecontrolovertheplacementofthesensornodeswhenthenetworkisinstalled(e.g.,whennodesaredroppedfromanairplane).Consequently,weassumethatnodesarerandomlydistributedacrosstheenvironment.Forsimplicityandeaseofpresentationwelimittheenvironmentto2dimensions,butallalgorithmsarecapableofoperatingin3D.Fig.1showsanexamplenetworkwith25nodes;pairsofnodesthatcancommunicatedirectlyareconnectedbyanedge.Theconnectivityofthenodesinthenetwork(i.e.,theaveragenumberofneighbors)isanimportantparameterthathasastrongimpactontheaccuracyofmostlocalizationalgorithms(seeSections4and5).Itcanbesetinitiallybyselectingaspecificnodedensity,andinsomecasesitcanbesetdynamicallybyadjustingthetransmitpoweroftheRFradioineachnode.Insomeapplicationscenarios,nodesmaybemobile.Inthispaper,however,wefocusonstaticnetworks,wherenodesdonotmove,sincethisisalreadyachallengingconditionfordistributedlocalization.Weassumethatsomeanchornodeshaveaprioriknowledgeoftheirownpositionwithrespecttosomeglobalcoordinatesystem.Notethatanchornodeshavethesamecapabilities(processing,communication,energyconsumption,etc.)asallothersensornodeswithunknownpositions;wedonotconsiderapproachesbasedonanexternalinfrastructurewithspecializedbeaconnodes(accesspoints)asusedin,forexample,theGPS-lesslocationsystemandtheCricketlocationsystem.Ideallythefractionofanchornodesshouldbeaslowaspossibletominimizetheinstallationcosts,andoursimulationresultsshowthat,fortunately,mostalgorithmsareratherinsensitivetothenumberofanchorsinthenetwork.Thefinalelementthatdefinesthecontextofdistributedlocalizationisthecapabilitytomeasurethedistancebetweendirectlyconnectednodesinthenetwork.FromacostperspectiveitisattractivetousetheRFradioformeasuringtherangebetweennodes,forexample,byobservingthesignalstrength.Experiencehasshown,however,thatthisapproachyieldspoordistanceestimates.Muchbetterresultsareobtainedbytime-of-flightmeasurements,particularlywhenacousticandRFsignalsarecombined;accuraciesofafewpercentofthetransmissionrangearereported.Oursimulationresultsprovideinsightintotheeffectoftheaccuracyofthedistancemeasurementsonthelocalizationalgorithms.Itisimportanttorealizethatthemainthreecontextparameters(connectivity,anchorfraction,andrangeerrors)aredependent.Poorrangemeasurementscanbecompensatedforbyusingmanyanchorsand/orahighconnectivity.Thispaperprovidesinsightinthecomplexrelationbetweenconnectivity,anchorfraction,andrangeerrorsforanumberofdistributedlocalizationalgorithms.2.1GENERICAPPROACHFromtheknownlocalizationalgorithmsspecificallyproposedforsensornetworks,weselectedthethreeapproachesthatmeetthebasicrequirementsforself-organization,robustness,andenergy-efficiency:?Ad-hocpositioningbyNiculescuandNath,?N-hopmultilaterationbySavvidesetal,and?RobustpositioningbySavareseetal.Theotherapproachesoftenincludeacentralprocessingelement,relyonanexternalinfrastructure,orinducetoomuchcommunication.Thethreeselectedalgorithmsarefullydistributedanduselocalbroadcastforcommunicationwithimmediateneighbors.Thislastfeatureallowsthemtobeexecutedbeforeanymultihoproutingisinplace,hence,theycansupportefficientlocation-basedroutingschemeslikeGAF.Althoughthethreealgorithmsweredevelopedindependently,wefoundthattheyshareacommonstructure.Wewereabletoidentifythefollowinggeneric,three-phaseapproach1fordeterminingtheindividualnodepositions:1.Determinethedistancesbetweenunknownsandanchornodes.2.Deriveforeachnodeapositionfromitsanchordistances.3.Refinethenodepositionsusinginformationabouttherange(distance)to,andpositionsofneighboringnodes.Theoriginaldescriptionsofthealgorithmspresentthefirsttwophasesasasingleentity,butwefoundthatseparatingthemprovidestwoadvantages.First,weobtainabetterunderstandingofthecombinedbehaviorbystudyingintermediateresults.Second,itbecomespossibletomix-and-matchalternativesforbothphasestotailorthelocalizationalgorithmtotheexternalconditions.Therefinementphaseisoptionalandmaybeincludedtoobtainmoreaccuratelocations.Intheremainderofthissectionwewilldescribethethreephases(distance,position,andrefinement)indetail.Foreachphasewewillenumeratethealternativesasfoundintheoriginaldescriptions.Table1givesthebreakdownintophasesofthethreeapproaches.Whenapplicablewealsodiscuss(minor)adjustmentsto(partsof)theindividualalgorithmsthatwereneededtoensurecompatibilitywiththealternatives.Duringoursimulationsweobservedthatweoccasionallyoperated(partsof)thealgorithmsoutsidetheirintendedscenarios,whichdeterioratedtheirperformance.Often,smallimprovementsbroughttheirperformancebackinlinewiththealternatives.2.2PHASE:DISTENCETOANCHORSInthisphase,nodesshareinformationtocollectivelydeterminethedistancesbetweenindividualnodesandtheanchors,sothatan(initial)positioncanbecalculatedinPhase2.NoneofthePhase1alternativesengagesincomplicatedcalculations,sothisphaseiscommunicationbounded.Althoughthethreedistributedlocalizationalgorithmseachuseadifferentapproach,theyshareacommoncommunicationpattern:informationisfloodedintothenetwork,startingattheanchornodes.Anetwork-widefloodbysomeanchorAisexpensivesinceeachnodemustforwardasinformationtoits(potentially)unawareneighbors.Thisimpliesascalingproblem:floodinginformationfromallanchorstoallnodeswillbecomemuchtooexpensiveforlargenetworks,evenwithlowanchorfractions.FortunatelyagoodpositioncanbederivedinPhase2withknowledge(positionanddistance)fromalimitednumberofanchors.Thereforenodescansimplystopforwardinginformationwhenenoughanchorshavebeen‘‘located’’.ThissimpleoptimizationpresentedintheRobustpositioningapproachprovedtobehighlyeffectiveincontrollingtheamountofcommunication(seeSection5.3).Wemodifiedtheothertwoapproachestoincludeafloodlimitaswell.2.2.1SUM-DISTThesimplesolutionfordeterminingthedistancetotheanchorsissimplyaddingtherangesencounteredateachhopduringthenetworkflood.ThisistheapproachtakenbytheN-hopmultilaterationapproach,butitremainednamelessintheoriginaldescription;wenameitSum-distinthispaper.Sum-diststartsattheanchorswhichsendamessageincludingtheiridentity,position,andapathlengthsetto0.Eachreceivingnodeaddsthemeasuredrangetothepathlengthandforwards(broadcasts)themessageifthefloodlimitallowsittodoso.Anotherconstraintisthatwhenthenodehasreceivedinformationabouttheparticularanchorbefore,itisonlyallowedtoforwardthemessageifthecurrentpathlengthislessthanthepreviousone.Theendresultisthateachnodewillhavestoredthepositionandminimumpathlengthtoatleastfloodlimitanchors.2.2.2DV-HOPAdrawbackofSum-dististhatrangeerrorsaccumulatewhendistanceinformationispropagatedovermultiplehops.Thiscumulativeerrorbecomessignificantforlargenetworkswithfewanchors(longpaths)and/orpoorranginghardware.Arobustalternativeistousetopologicalinformationbycountingthenumberofhopsinsteadofsummingthe(erroneous)ranges.ThisapproachwasnamedDV-hopbyNiculescuandNath,andHop-TERRAINbySavareseetal.SincetheresultsofDV-hopwerepublishedfirstwewillusethisname.DV-hopessentiallyconsistsoftwofloodwaves.Afterthefirstwave,whichissimilartoSum-dist,nodeshaveobtainedthepositionandminimumhopcounttoatleastfloodlimitanchors.ThesecondcalibrationwaveisneededtoconverthopcountsintodistancessuchthatPhase2cancomputeaposition.Thisconversionconsistsofmultiplyingthehopcountwithanaveragehopdistance.Wheneverananchora1infersthepositionofanotheranchora2duringthefirstwave,itcomputesthedistancebetweenthem,anddividesthatbythenumberofhopstoderivetheaveragehopdistancebetweena1anda2.Whencalibrating,ananchortakesallremoteanchorsintoaccountthatitisawareof.Nodesforward(broadcast)calibrationmessagesonlyfromthefirstanchorthatcalibratesthem,whichreducesthetotalnumberofmessagesinthenetwork.2.2.3EUCLIDEANAdrawbackofDV-hopisthatitfailsforhighlyirregularnetworktopologies,wherethevarianceinactualhopdistancesisverylarge.NiculescuandNathhaveproposedanothermethod,namedEuclidean,whichisbasedonthelocalgeometryofthenodesaroundananchor.Againanchorsinitiateaflood,butforwardingthedistanceismorecomplicatedthaninthepreviouscases.Whenanodehasreceivedmessagesfromtwoneighborsthatknowtheirdistancetotheanchor,andtoeachother,itcancalculatethedistancetotheanchor.Fig.2showsanode(_Self_)thathastwoneighbors:n1andn2withdistanceestimatestoananchor.Togetherwiththeknownrangesc,d,ande,Euclideanarrivesattwopossiblevalues(r1andr2)forthedistanceofthenodetotheanchor.Niculescudescribestwomethodstodecideonwhich,ifany,distancetouse.Theneighborvotemethodcanbeappliedifthereisathirdneighbor(n3)thathasadistanceestimatetotheanchorandthatisconnectedtoeithern1orn2.Replacingn2(orn1)byn3willagainyieldapairofdistanceestimates.Thecorrectdistanceispartofbothpairs,andisselectedbyasimplevoting.Ofcourse,moreneighborscanbeincludedtomaketheselectionmoreaccurate.Thesecondselectionmethodiscalledcommonneighborandcanbeappliedifnoden3isconnectedtobothn1andn2.Basicgeometricreasoningleadstotheconclusionthattheanchorandn3areonthesameoroppositesideofthemirroringlinen1–n2,andsimilarlywhetherornotselfandn3areonthesameside.Fromthisitfollowswhetherornotselfandtheanchorlayonthesameside.TohandletheuncertaintyintroducedbyrangeerrorsNiculescuimplementsasafetymechanismthatrejectsill-formed(flat)triangles,whichcaneasilyderailtheselectionprocessby‘neighborvote’and‘commonneighbor’.Thischeckverifiesthatthesumofthetwosmallestsidesexceedsthelargestsidemultipliedbyathreshold,whichissettotwotimestherangevariance.Forexample,thetriangleSelf-n1–n2inFig.2isacceptedwhenc+d>(1+2RangeVar)*e.Notethatthesafetycheckbecomesasstrictastherangevarianceincreases.Thisleadstoalowercoverage,definedasthepercentageofnon-anchornodesforwhichapositionwasdetermined2.3PHASE:NODEPOSITIONInthesecondphasenodesdeterminetheirpositionbasedonthedistanceestimatestoanumberofanchorsprovidedbyoneofthethreePhase1alternatives(Sum-dist,DV-hop,orEuclidean).TheAd-hocpositioningandRobustpositioningapproachesuselaterationforthispurpose.N-hopmultilateration,ontheotherhand,usesamuchsimplermethod,whichwenamedMin–max.Inbothcasesthedeterminationofthenodepositionsdoesnotinvolveadditionalcommunication.2.3.1LATERATIONThemostcommonmethodforderivingapositionislateration,whichisaformoftriangulation.Fromtheestimateddistancesandknownpositionsoftheanchorswederivethefollowingsystemofequations:Theunknownpositionisdenotedby.Thesystemcanbelinedbysubtractingthelastequationfromthefirstn_1equationsReorderingthetermsgivesapropersystemoflinearequationsintheformAx=b,whereThesystemissolvedusingastandardleast-squaresapproach.Inexceptionalcasesthematrixinversecannotbecomputedandlaterationfails.Inthemajorityofthecases,however,wesucceedincomputingalocationestimate.WerunanadditionalsanitycheckbycomputingtheresiduebetweenthegivendistancesandthedistancestothelocationestimateAlargeresiduesignalsaninconsistentsetofequations;werejectthelocation^xwhenthelengthoftheresidueexceedstheradiorange.2.3.2MIN-MAXLaterationisquiteexpensiveinthenumberoffloatingpointoperationsthatisrequired.AmuchsimplermethodispresentedbySavvidesetal.aspartoftheN-hopmultilaterationapproach.Themainideaistoconstructaboundingboxforeachanchorusingitspositionanddistanceestimate,andthentodeterminetheintersectionoftheseboxes.Thepositionofthenodeissettothecenteroftheintersectionbox.Fig.3illustratestheMin–maxmethodforanodewithdistanceestimatestothreeanchors.NotethattheestimatedpositionbyMin–maxisclosetothetruepositioncomputedthroughlateration(i.e.,theintersectionofthethreecircles).Theboundingboxofanchoriscreatedbyaddingandsubtractingtheestimateddistancefromtheanchorposition:Theintersectionoftheboundingboxesiscomputedbytakingthemaximumofallcoordinateminimumsandtheminimumofallmaximums:Thefinalpositionissettotheaverageofbothcornercoordinates.Asforlateration,weonlyacceptthefinalpositioniftheresidueissmall.2.4PHASE3:REFINEMENTTheobjectiveofthethirdphaseistorefinethe(initial)nodepositionscomputedduringPhase2.Thesepositionsarenotveryaccurate,evenundergoodconditions(highconnectivity,smallrangeerrors),becausenotallavailableinformationisusedinthefirsttwophases.Inparticular,mostrangesbetweenneighboringnodesareneglectedwhenthenode–anchordistancesaredetermined.TheiterativeRefinementprocedureproposedbySavareseetal.doestakeintoaccountallinternodesranges,whennodesupdatetheirpositionsinasmallnumberofsteps.Atthebeginningofeachstepanodebroadcastsitspositionestimate,receivesthepositionsandcorrespondingrangeestimatesfromitsneighbors,andperformsthePhase2todetermineitsnewposition.Inmanycasestheconstraintsimposedbythedistancestotheneighboringlocationswillforcethenewpositiontowardsthetruepositionofthenode.When,afteranumberofiterations,thepositionupdatebecomessmall,Refinementstopsandreportsthefinalposition.Thebasiciterativerefinementprocedureoutlinedaboveprovedtobetoosimpletobeusedinpractice.Themainproblemisthaterrorspropagatequicklythroughthenetwork;asingleerrorintroducedbysomenodeneedsonlyditerationstoaffectallnodes,wheredisthenetworkdiameter.Thiseffectwascounteredby(1)clippingundeterminednodeswithnon-overlappingpathstolessthanthreeanchors,(2)filteringoutdifficultsymmetrictopologies,and(3)associatingaconfidencemetricwitheachnodeandusingtheminaweightedleast-squaressolution.Thedetails(see)arebeyondthescopeofthispaper,buttheadjustmentsconsiderablyimprovedtheperformanceoftheRefinementprocedure.Thisislargelyduetotheconfidencemetric,whichallowsfilteringofbadnodes,thusincreasingthe(average)accuracyattheexpenseofcoverage.TheN-hopmultilaterationapproachbySavvidesetal.alsoincludesaniterativerefinementprocedure,butitislesssophisticatedthantheRefinementdiscussedabove.Inparticular,theydonotuseweights,butsimplygroupnodesintoso-calledcomputationsubtrees(over-constrainedconfigurations)andenforcenodeswithinasubtreetoexecutetheirpositionrefinementinturninafixedsequencetoenhanceconvergencetoapre-specifiedtolerance.IntheremainderofthispaperwewillonlyconsiderthemoreadvancedRefinementprocedureofSavareseetal.翻譯:無(wú)線傳感器網(wǎng)絡(luò)分布式定位的定量比較摘要本文研究的問(wèn)題,在Ad-Hoc傳感器網(wǎng)絡(luò)確定節(jié)點(diǎn)位置。在同一仿真平臺(tái)上比較了3種分布式定位算法。該算法都有一個(gè)共同的,用三階段分布式定位結(jié)構(gòu)體系:(1)確定未知節(jié)點(diǎn)到錨節(jié)點(diǎn)距離,(2)節(jié)點(diǎn)定位,(3)迭代求精。我們提出一個(gè)詳細(xì)分析比較各個(gè)方案,為每一個(gè)階段,而且是一個(gè)一對(duì)一的比較完整的算法。主要的結(jié)論是,沒有一個(gè)單一的算法性能最好,哪一個(gè)算法較為可取,取決于條件(范圍錯(cuò)誤,連接,錨分?jǐn)?shù)等)。在任何情況下都有有很大的空間提高準(zhǔn)確性和或增加集中性。關(guān)鍵詞:自組網(wǎng);分布式算法;定位1簡(jiǎn)介無(wú)線傳感器網(wǎng)絡(luò)持有的許多應(yīng)用在監(jiān)察和控制方面。例如:目標(biāo)跟蹤,入侵檢測(cè),野生動(dòng)物棲息地監(jiān)測(cè),氣候控制,以及災(zāi)害管理??焖侔l(fā)展一體化的數(shù)字電路驅(qū)動(dòng)了傳感器的應(yīng)用,這將為我們帶來(lái)美小型,廉價(jià),自治區(qū)傳感器節(jié)點(diǎn)在不久的將來(lái)。新技術(shù)提供新的機(jī)遇,但它還介紹了一些新的問(wèn)題。這一點(diǎn)尤為重要,真正的傳感器網(wǎng)絡(luò)中的個(gè)別節(jié)點(diǎn)能力是很有限的。因此它們之間需要協(xié)作節(jié)點(diǎn),但節(jié)省能源是一個(gè)重大的問(wèn)題,這意味著通信應(yīng)盡量減少。這些目標(biāo)互有沖突,對(duì)于許多的情況需要非傳統(tǒng)的解決方案。最近的一項(xiàng)Akyildizetal.等人的調(diào)查顯示。討論一長(zhǎng)串的開放式研究的問(wèn)題,必須加以處理前傳感器網(wǎng)絡(luò)部署。問(wèn)題的范圍從物理層(低功率傳感,處理和通信硬件)到應(yīng)用層(查詢和發(fā)布數(shù)據(jù)議定書)。在本文中,我們處理自組網(wǎng)傳感器網(wǎng)絡(luò)定位。也就是說(shuō),我們要確定位置的個(gè)別傳感器節(jié)點(diǎn),而不必依賴外部基礎(chǔ)設(shè)施(基站,衛(wèi)星等)。自組織問(wèn)題已得到相當(dāng)多注意,在過(guò)去,由于許多應(yīng)用需要知道物體或人在哪,并因此建立各種定位服務(wù)。毫無(wú)疑問(wèn),最知名的全球定位系統(tǒng)是今天所使用的位置服務(wù)。由全球定位系統(tǒng)實(shí)施,但是它不適合低成本,自組傳感器網(wǎng)絡(luò),原因是全球定位系統(tǒng)是基于廣泛的基礎(chǔ)設(shè)施(即衛(wèi)星)的。同樣的解決方案開發(fā)中面積機(jī)器人和普適計(jì)算一般不適用于傳感器網(wǎng)絡(luò)因?yàn)樗麄冃枰嗟奶幚砟芰湍茉?。近?lái),一些定位系統(tǒng)已經(jīng)被建議專門為傳感器網(wǎng)絡(luò)。我們感興趣的,真正的分布式算法可以受用于大型Ad-Hoc傳感器網(wǎng)絡(luò)。這種算法應(yīng)該是:?自組織(即不依賴于全球基礎(chǔ)設(shè)施)?強(qiáng)大(即容納節(jié)點(diǎn)失敗和范圍錯(cuò)誤)?能源效率(即需要很少計(jì)算,特別是通信)這些要求立即排除一些對(duì)于傳感器網(wǎng)絡(luò)建議的定位算法。我們進(jìn)行了一次徹底的分析并且符合上述規(guī)定的3種分布式算法,以確定它們?cè)诟鞣N不同條件下的反應(yīng)。特別是,我們研究重點(diǎn)參數(shù)如下:范圍錯(cuò)誤,連通性(密度),及錨節(jié)點(diǎn)密度。這些算法不同在于它們位置精確度,網(wǎng)絡(luò)復(fù)蓋范圍,誘發(fā)網(wǎng)絡(luò)交通和處理器負(fù)荷。三種算法基于不同的設(shè)計(jì)目標(biāo),毫不奇怪的每個(gè)算法都要根據(jù)一套特定的條件實(shí)施。在每一個(gè)條件下,但是,即使是最好的算法還有很多改進(jìn)的余地,精確度和連通性。我們的工作描述在這個(gè)文件是:?我們可以找出一個(gè)共同的,分三個(gè)階段,在結(jié)構(gòu)分布式定位算法?我們可以找出一個(gè)通用的優(yōu)化適用所有算法?我們提供一份詳細(xì)的比較單一(仿真)平臺(tái)?顯示:不存在算法最好的,在大多數(shù)情況下存在著改進(jìn)的余地第2節(jié)論述了選擇,通用結(jié)構(gòu),和運(yùn)作三個(gè)分布式定位算法大規(guī)模Ad-Hoc傳感器網(wǎng)絡(luò)。這些算法比較基于同一個(gè)模擬仿真平臺(tái),它被描述在第3節(jié),第4節(jié)介紹中間結(jié)果獨(dú)立描述,而第5條規(guī)定,一份詳細(xì)的總體比較,并進(jìn)行深入的敏感性分析。最后,我們給出的結(jié)論在第6節(jié)。2定位算法在詳細(xì)討論分布式定位之前,我們先前概要的上下文中,這些算法已經(jīng)被介紹。第一考慮到傳感器網(wǎng)絡(luò)要求和自組網(wǎng)沒有好的控制,安裝網(wǎng)絡(luò)時(shí)(例如,當(dāng)節(jié)點(diǎn)分別從飛機(jī)下落)。因此,我們假定節(jié)點(diǎn)是隨機(jī)分布在整個(gè)環(huán)境。為簡(jiǎn)化和易用性陳述我們限制的環(huán)境,以2尺寸,但所有算法是能夠在三維。網(wǎng)絡(luò)有25個(gè)節(jié)點(diǎn);一條線連接的兩個(gè)節(jié)點(diǎn)可以直接通信,網(wǎng)絡(luò)中節(jié)點(diǎn)的連通性是一個(gè)重要參數(shù),具有很強(qiáng)的準(zhǔn)確性的影響對(duì)于定位算法。它可以設(shè)置初步通過(guò)選擇一個(gè)特定節(jié)點(diǎn)密度,并在一些情況下,可設(shè)定動(dòng)態(tài)調(diào)整發(fā)射功率的射頻無(wú)線電在每個(gè)節(jié)點(diǎn)。在一些應(yīng)用情況下,節(jié)點(diǎn)可移動(dòng)。在本文中,但是,我們專注于靜態(tài)網(wǎng)絡(luò),即節(jié)點(diǎn)靜止,因?yàn)檫@已經(jīng)是一個(gè)具有挑戰(zhàn)性的條件分布式定位。我們假定一些錨節(jié)點(diǎn)有一個(gè)及嫩的了解針對(duì)一些全球坐標(biāo)系統(tǒng)。注這錨節(jié)點(diǎn)具有相同的功能(處理,通信,能源消耗,等),與其他所有傳感器未知節(jié)點(diǎn);我們不考慮采取各種辦法的基礎(chǔ)上外部基礎(chǔ)設(shè)施與專門的錨節(jié)點(diǎn)節(jié)點(diǎn)(接入點(diǎn))所用的,舉例來(lái)說(shuō),GPS的不足定位系統(tǒng)和板球定位系統(tǒng)。最理想的小錨節(jié)點(diǎn)應(yīng)盡可能低減少安裝成本,而我們的模擬結(jié)果表明,說(shuō),幸運(yùn)的是,大部分算法是相當(dāng)敏感的對(duì)于網(wǎng)絡(luò)中的錨節(jié)點(diǎn)。最后一項(xiàng)內(nèi)容,它定義分布式定位是有能力來(lái)衡量在網(wǎng)絡(luò)中它們之間的距離有直接關(guān)連的節(jié)點(diǎn)。從成本的角度來(lái)看,這是有吸引力的利用射頻無(wú)線電測(cè)量節(jié)點(diǎn)之間范圍,例如,通過(guò)觀察信號(hào)強(qiáng)度。經(jīng)驗(yàn)證明,然而這種做法產(chǎn)生惡劣的距離估計(jì)。許多更好的成果得到了通過(guò)飛行測(cè)量表明,尤其是當(dāng)聲波在與射頻信號(hào)相結(jié)合;精度幾個(gè)百分點(diǎn)的傳輸范圍報(bào)道。我們的模擬結(jié)果提供精確的距離測(cè)量對(duì)定位算法的影響。重要的是要意識(shí)到主要依靠三個(gè)參數(shù)(連接,錨分?jǐn)?shù),和測(cè)距誤差)。惡劣的范圍測(cè)量利用許多錨節(jié)點(diǎn)或高連通測(cè)量范圍能得到補(bǔ)償。本文我們了解到,在分布式定位算法中連通性,錨分?jǐn)?shù),測(cè)距誤差的關(guān)系。2.1通用方法從已知的對(duì)于傳感器網(wǎng)絡(luò)定位算法建議,我們選定三個(gè)辦法滿足網(wǎng)絡(luò)的基本要求對(duì)于自組織性,魯棒性,能源效率:?Ad-Hocpositioning?N-hopmultilateration?Robustpositioning其他途徑通常包括一個(gè)中央處理元素,依靠外部基礎(chǔ)設(shè)施或者導(dǎo)致太多的通信。三個(gè)選定的算法是完全分布和利用當(dāng)?shù)貜V播利用相鄰節(jié)點(diǎn)。這最后一項(xiàng)功能使其對(duì)任何多跳之前執(zhí)行路由已經(jīng)就位,因此,他們可以支持高效率基于位置的路由計(jì)劃如GAF。盡管三種算法開發(fā)獨(dú)立后,我們發(fā)現(xiàn)他們都有一個(gè)共同的結(jié)構(gòu)。我們可以找出以下通用的,三個(gè)階段的做法1確定個(gè)別節(jié)點(diǎn)的職務(wù):1、未知節(jié)點(diǎn)到錨節(jié)點(diǎn)距離的測(cè)量:決定位置節(jié)點(diǎn)與錨節(jié)點(diǎn)之間的距離2、節(jié)點(diǎn)定位:利用第一階段得出的到錨節(jié)點(diǎn)的距離和錨節(jié)點(diǎn)的位置信息計(jì)算出未知節(jié)點(diǎn)的坐標(biāo)3、迭代求精:利用鄰居節(jié)點(diǎn)距離信息對(duì)節(jié)點(diǎn)位置進(jìn)行求精原來(lái)描述的算法目前前兩個(gè)階段作為一個(gè)單一實(shí)體,而是我們發(fā)現(xiàn),他們的分離提供了兩個(gè)好處。首先,我們得到了更深入的了解該組合行為由研究的結(jié)果。第二,它才成為可能,以MIN-MAX匹配備選方案為這兩個(gè)階段定制外部條件定位算法。優(yōu)化階段是可選的可能會(huì)包含要獲取更準(zhǔn)確的位置。在余下的本節(jié)中,我們將描述這三個(gè)階段(測(cè)距,定位和優(yōu)化)詳細(xì)研究。我們將枚舉每個(gè)階段備選方案為原來(lái)的說(shuō)明中找到。提供分類到的階段三種方法。如果適用我們還討論調(diào)整每個(gè)確保所需的算法與備選方案兼容性。在我們模擬操作中觀察到,我們偶爾操作(部分)的算法外有意情景,使操作結(jié)果惡化。很多時(shí)候,這些都是由小的改進(jìn)帶來(lái)的。2.2第1期:距離主播在這一階段,節(jié)點(diǎn)的信息共享,以確定個(gè)別節(jié)點(diǎn)和錨節(jié)點(diǎn)的距離,使一個(gè)(初始)位置可以計(jì)算出來(lái),在第2階段。沒有了第1期替代從事復(fù)雜的計(jì)算,所以這個(gè)階段的工作是通訊界的。雖然三個(gè)分布式定位算法每使用一種不同的方法,他們都有一個(gè)共同通信模式:信息泛洪到網(wǎng)絡(luò),開始在主播節(jié)點(diǎn)。一個(gè)網(wǎng)絡(luò)性的泛洪,網(wǎng)絡(luò)范圍內(nèi)的大量通過(guò)一些標(biāo)記A是昂貴,因?yàn)槊總€(gè)節(jié)點(diǎn)必須將轉(zhuǎn)發(fā)A的信息到它(可能)不知道鄰居節(jié)點(diǎn)。這意味著誤差問(wèn)題:泛洪信息從所有主播向所有節(jié)點(diǎn)將是太大昂貴對(duì)于大型網(wǎng)絡(luò),即使使用低錨錨點(diǎn)分?jǐn)?shù)。幸運(yùn)的是一個(gè)好的位置可以導(dǎo)出在階段2與知識(shí)(測(cè)距和定位)從一個(gè)有限數(shù)量的定位標(biāo)記因此節(jié)點(diǎn)可以簡(jiǎn)單地停止轉(zhuǎn)發(fā)信息當(dāng)足夠的錨已位于路由表中時(shí)。這個(gè)簡(jiǎn)單的優(yōu)化提出了在魯棒定位的做法被證明是高度有效地控制數(shù)量的通信。我們修改了其他兩個(gè)辦法包括泛洪為好。2.2.1Sum-dist最簡(jiǎn)單的解決辦法定距離到錨是將距離信息添加到洪泛的每跳通信中。這是所采取的做法的N-Hopmultilateration辦法,我們將它命名為Sum-dist在這一文件中。Sum-dist開始從錨節(jié)點(diǎn)出發(fā),發(fā)出一個(gè)信息,錨節(jié)點(diǎn)發(fā)送包含它們身份和位置信息的消息,路徑初始長(zhǎng)度設(shè)為0。每個(gè)接收到該消息的節(jié)點(diǎn)將測(cè)量到的距離添加到路徑長(zhǎng)度里面并且當(dāng)洪泛限制允許時(shí)將其轉(zhuǎn)發(fā)出去。另一個(gè)制約因素是,其中,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論