版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省黃岡市巴驛中學數(shù)學高三上期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.32.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.3.已知命題,,則是()A., B.,.C., D.,.4.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1005.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.在復平面內(nèi),復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.8.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8510.已知,,,若,則()A. B. C. D.11.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.12.等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在面積為的中,,若點是的中點,點滿足,則的最大值是______.14.已知函數(shù),若關于的方程恰有四個不同的解,則實數(shù)的取值范圍是______.15.設等比數(shù)列的前項和為,若,,則__________.16.已知數(shù)列的各項均為正數(shù),記為數(shù)列的前項和,若,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項都為正數(shù),,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數(shù),如,,求數(shù)列的前2020項和.18.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.19.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.20.(12分)已知函數(shù).(1)求不等式的解集;(2)設的最小值為,正數(shù),滿足,證明:.21.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.22.(10分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準線或焦點的距離來求解.2、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.3、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.4、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.5、C【解析】
首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應用,屬于基礎題.6、B【解析】
化簡復數(shù)為的形式,然后判斷復數(shù)的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.7、C【解析】
直接利用復數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.8、A【解析】
根據(jù)冪函數(shù)定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應用,屬于基礎題.9、D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.10、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數(shù)量積的坐標運算,掌握向量數(shù)量積的坐標運算是解題關鍵.11、A【解析】
設出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.12、C【解析】
解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉(zhuǎn)體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結果,注意對知識點的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由任意三角形面積公式與構建關系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數(shù)量積的運算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.14、【解析】
設,判斷為偶函數(shù),考慮x>0時,的解析式和零點個數(shù),利用導數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設,則在是偶函數(shù),當時,,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數(shù)的取值范圍是.【點睛】本題主要考查了函數(shù)的零點的個數(shù)問題,涉及構造函數(shù),函數(shù)的奇偶性,利用導數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結合思想方法,以及化簡運算能力和推理能力,屬于難題.15、【解析】
由題意,設等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解.【詳解】由題意,設等比數(shù)列的公比為,因為,即,解得,,所以.【點睛】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關鍵,著重考查了推理與計算能力,屬于基礎題.16、63【解析】
對進行化簡,可得,再根據(jù)等比數(shù)列前項和公式進行求解即可【詳解】由數(shù)列為首項為,公比的等比數(shù)列,所以63【點睛】本題考查等比數(shù)列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數(shù)列是正項數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項公式;(Ⅱ),根據(jù)新定義和對數(shù)的運算分類討論數(shù)列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項都為正數(shù),∴,即.∴數(shù)列是以2為首項,2為公比的等比數(shù)列,∴.(Ⅱ)∵,∴,.∴數(shù)列的前2020項的和為.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式和數(shù)列的前項和,意在考查轉(zhuǎn)化與化歸的思想,計算能力,屬于中檔題型.18、;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據(jù)求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結合運用向量,韋達定理和點到直線的距離的知識,屬于難題.19、(1)(2)直線l的斜率為或【解析】
(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.20、(1)(2)證明見解析【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因為,,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需證,因為,所以成立,所以.【點睛】本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運用,屬于中檔題.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)正弦定理先求得邊c,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全省小學數(shù)學教師賽課一等獎數(shù)學一年級上冊(人教2024年新編)《連加、連減 》課件
- 2024年安徽省高考生物試卷(含答案解析)
- 2014-2018年傳感器市場趨勢報告
- 小學三年發(fā)展規(guī)劃(2024年6月-2027年6月)
- 2024至2030年中國廣告照明節(jié)能設備數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國小印章行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國子彈型慢回彈耳塞數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國壁掛普通型燃氣報警器數(shù)據(jù)監(jiān)測研究報告
- 高三數(shù)學復習研討會結新
- 2024至2030年中國單音電子警報器數(shù)據(jù)監(jiān)測研究報告
- 園林設施維護方案
- 普希金《驛站長》閱讀練習及答案
- 《生物多樣性公約》及國際組織課件
- 通信工程企業(yè)安全生產(chǎn)資料、臺賬及現(xiàn)場檢查表
- 柴油發(fā)電機房安全管理制度與柴油發(fā)電機房安全管理制度及操作規(guī)程
- 商務英語寫作-外貿(mào)書信-建立業(yè)務關系
- 防暴隊形訓練
- 部編人教版九年級歷史下冊教案(全冊)
- 新聞采訪與寫作(馬工程筆記)
- 科斯:社會成本問題
- 護理的人文關懷-PPT課件
評論
0/150
提交評論