2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題_第1頁(yè)
2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題_第2頁(yè)
2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題_第3頁(yè)
2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題_第4頁(yè)
2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省大名一中高三第二次適應(yīng)性測(cè)試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(xiàn)的一條漸近線(xiàn)方程為,則雙曲線(xiàn)的離心率為()A. B. C. D.2.已知圓與拋物線(xiàn)的準(zhǔn)線(xiàn)相切,則的值為()A.1 B.2 C. D.43.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.24.已知雙曲線(xiàn)(a>0,b>0)的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線(xiàn)l與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則此雙曲線(xiàn)的離心率e的取值范圍是()A. B.(1,2), C. D.5.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.6.二項(xiàng)式的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3607.設(shè)且,則下列不等式成立的是()A. B. C. D.8.圓錐底面半徑為,高為,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線(xiàn)的距離的最大值是()A. B. C. D.9.我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸10.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種11.設(shè)點(diǎn),,不共線(xiàn),則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件12.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實(shí)數(shù)的值是_______.14.甲、乙、丙、丁四名同學(xué)報(bào)名參加淮南文明城市創(chuàng)建志愿服務(wù)活動(dòng),服務(wù)活動(dòng)共有“走進(jìn)社區(qū)”、“環(huán)境監(jiān)測(cè)”、“愛(ài)心義演”、“交通宣傳”等四個(gè)項(xiàng)目,每人限報(bào)其中一項(xiàng),記事件為“4名同學(xué)所報(bào)項(xiàng)目各不相同”,事件為“只有甲同學(xué)一人報(bào)走進(jìn)社區(qū)項(xiàng)目”,則的值為_(kāi)_____.15.下圖是一個(gè)算法的流程圖,則輸出的x的值為_(kāi)______.16.若,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線(xiàn)交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);(2)求證:.18.(12分)對(duì)于非負(fù)整數(shù)集合(非空),若對(duì)任意,或者,或者,則稱(chēng)為一個(gè)好集合.以下記為的元素個(gè)數(shù).(1)給出所有的元素均小于的好集合.(給出結(jié)論即可)(2)求出所有滿(mǎn)足的好集合.(同時(shí)說(shuō)明理由)(3)若好集合滿(mǎn)足,求證:中存在元素,使得中所有元素均為的整數(shù)倍.19.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線(xiàn)段的中點(diǎn),平面,,為線(xiàn)段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿(mǎn)足,使得直線(xiàn)與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.20.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動(dòng)點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)軸時(shí),.(1)求橢圓的方程;(2)延長(zhǎng)分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.21.(12分)十八大以來(lái),黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國(guó)家對(duì)“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級(jí)財(cái)政提高了對(duì)“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報(bào)銷(xiāo)的比例,其中門(mén)診報(bào)銷(xiāo)比例如下:表1:新農(nóng)合門(mén)診報(bào)銷(xiāo)比例醫(yī)院類(lèi)別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門(mén)診報(bào)銷(xiāo)比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),李村一個(gè)結(jié)算年度門(mén)診就診人次情況如下:表2:李村一個(gè)結(jié)算年度門(mén)診就診情況統(tǒng)計(jì)表醫(yī)院類(lèi)別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個(gè)結(jié)算年度內(nèi)各門(mén)診就診人次占李村總就診人次的比例70%10%15%5%如果一個(gè)結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門(mén)診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個(gè)結(jié)算年度內(nèi)去門(mén)診就診人次為2000人次.(Ⅰ)李村在這個(gè)結(jié)算年度內(nèi)去三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門(mén)診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個(gè)結(jié)算年度內(nèi)門(mén)診就診人次占全村總就診人次的比例視為概率,求李村這個(gè)結(jié)算年度每人次用于門(mén)診實(shí)付費(fèi)用(報(bào)銷(xiāo)后個(gè)人應(yīng)承擔(dān)部分)的分布列與期望.22.(10分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線(xiàn)的離心率.【題目詳解】雙曲線(xiàn)的漸近線(xiàn)方程為,由題意可得,因此,該雙曲線(xiàn)的離心率為.故選:B.【題目點(diǎn)撥】本題考查利用雙曲線(xiàn)的漸近線(xiàn)方程求雙曲線(xiàn)的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.2、B【解題分析】

因?yàn)閳A與拋物線(xiàn)的準(zhǔn)線(xiàn)相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線(xiàn)的距離等于半徑,可知的值為2,選B.【題目詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、B【解題分析】

根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【題目詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【題目點(diǎn)撥】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.4、A【解題分析】

若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線(xiàn)離心率的取值范圍.【題目詳解】已知雙曲線(xiàn)的右焦點(diǎn)為,若過(guò)點(diǎn)且傾斜角為的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則該直線(xiàn)的斜率的絕對(duì)值小于等于漸近線(xiàn)的斜率,,離心率,,故選:.【題目點(diǎn)撥】本題考查雙曲線(xiàn)的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.5、C【解題分析】

根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【題目詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【題目點(diǎn)撥】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.6、A【解題分析】試題分析:因?yàn)榈恼归_(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.7、A【解題分析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.8、C【解題分析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線(xiàn),點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過(guò)的軸截面如圖:,過(guò)作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線(xiàn)面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.9、B【解題分析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問(wèn)題;2.圓臺(tái)的體積.10、B【解題分析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個(gè)村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計(jì)算即可.【題目詳解】2名內(nèi)科醫(yī)生,每個(gè)村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【題目點(diǎn)撥】本題主要考查了分組分配問(wèn)題,解決這類(lèi)問(wèn)題的關(guān)鍵是先分組再分配,屬于常考題型.11、C【解題分析】

利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【題目詳解】由于點(diǎn),,不共線(xiàn),則“”;故“”是“”的充分必要條件.故選:C.【題目點(diǎn)撥】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.12、B【解題分析】

化簡(jiǎn)得到z=a-1+a+1【題目詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【題目點(diǎn)撥】本題考查了根據(jù)復(fù)數(shù)類(lèi)型求參數(shù),意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】

把向量進(jìn)行轉(zhuǎn)化,用表示,利用基本不等式可求實(shí)數(shù)的值.【題目詳解】,解得=1.故答案為:1.【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).14、【解題分析】

根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【題目詳解】根據(jù)題意得所以故答案為:【題目點(diǎn)撥】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.15、1【解題分析】

利用流程圖,逐次進(jìn)行運(yùn)算,直到退出循環(huán),得到輸出值.【題目詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時(shí)14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【題目點(diǎn)撥】本題主要考查程序框圖的識(shí)別,“還原現(xiàn)場(chǎng)”是求解這類(lèi)問(wèn)題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).16、8【解題分析】

根據(jù),利用基本不等式可求得函數(shù)最值.【題目詳解】,,當(dāng)且僅當(dāng)且,即時(shí),等號(hào)成立.時(shí),取得最小值.故答案為:【題目點(diǎn)撥】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)見(jiàn)解析.【解題分析】

(1)將曲線(xiàn)的極坐標(biāo)方程變形為,再由可將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線(xiàn)的方程與曲線(xiàn)的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),即可得出線(xiàn)段的中點(diǎn)的坐標(biāo);(2)求得,寫(xiě)出直線(xiàn)的參數(shù)方程,將直線(xiàn)的參數(shù)方程與曲線(xiàn)的普通方程聯(lián)立,利用韋達(dá)定理求得的值,進(jìn)而可得出結(jié)論.【題目詳解】(1)曲線(xiàn)的極坐標(biāo)方程可化為,即,將代入曲線(xiàn)的方程得,所以,曲線(xiàn)的直角坐標(biāo)方程為.將直線(xiàn)的極坐標(biāo)方程化為普通方程得,聯(lián)立,得或,則點(diǎn)、,因此,線(xiàn)段的中點(diǎn)為;(2)由(1)得,,易知的垂直平分線(xiàn)的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【題目點(diǎn)撥】本題考查曲線(xiàn)的極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線(xiàn)參數(shù)幾何意義的應(yīng)用,涉及韋達(dá)定理的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1),,,.(2);證明見(jiàn)解析.(3)證明見(jiàn)解析.【解題分析】

(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿(mǎn)足題意.【題目詳解】(1),,,.(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時(shí),,不滿(mǎn)足題意;若,此時(shí),滿(mǎn)足題意,,其中為相異正整數(shù).(3)記,則,首先,,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對(duì)于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類(lèi)推:,,此時(shí),故中存在元素,使得中所有元素均為的整數(shù)倍.【題目點(diǎn)撥】本題考查集合中的新定義問(wèn)題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進(jìn)行推理說(shuō)明,對(duì)于學(xué)生分析和解決問(wèn)題能力、邏輯推理能力有較高的要求,屬于較難題.19、(1)(ⅰ)證明見(jiàn)解析(ⅱ)(2)存在,【解題分析】

(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【題目詳解】(1)(?。┳C明:連接交于點(diǎn),連接,,因?yàn)闉榫€(xiàn)段的中點(diǎn),所以,因?yàn)椋砸驗(yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)?,所以又因?yàn)槠矫妫矫?,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)椋?,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€(xiàn)與平面所成的角的正弦值為,所以解得所以存在滿(mǎn)足,使得直線(xiàn)與平面所成的角的正弦值為.【題目點(diǎn)撥】此題二查線(xiàn)面平行的證明,考查銳二面角的余弦值的求法,考查滿(mǎn)足線(xiàn)面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線(xiàn)線(xiàn),線(xiàn)面,面面的位置關(guān)系等知識(shí),考查了推理能力與計(jì)算能力,屬于中檔題.20、(1);(2)【解題分析】

(1)根據(jù)題意直接計(jì)算得到,,得到橢圓方程.(2)不妨設(shè),且,設(shè),代入數(shù)據(jù)化簡(jiǎn)得到,故,得到答案.【題目詳解】(1),所以,,化簡(jiǎn)得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設(shè),且,設(shè),所以由,得,所以,由,得,代入,化簡(jiǎn)得:,由于,所以,同理可得,所以,所以當(dāng)時(shí),最小為【題目點(diǎn)撥】本題考查了橢圓方程,橢圓中的向量運(yùn)算和最值,意在考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論