2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題含解析_第1頁
2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題含解析_第2頁
2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題含解析_第3頁
2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題含解析_第4頁
2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省無錫市小黃卷數(shù)學九上期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,某幢建筑物從2.25米高的窗口用水管向外噴水,噴的水流呈拋物線型(拋物線所在平面與墻面垂直),如果拋物線的最高點離墻1米,離地面3米,則水流下落點離墻的距離是()A.2.5米 B.3米 C.3.5米 D.4米2.將拋物線y=﹣(x+1)2+3向右平移2個單位后得到的新拋物線的表達式為()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+33.下列函數(shù)中,是的反比例函數(shù)()A. B. C. D.4.按如圖所示的方法折紙,下面結論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個5.下列命題中,真命題是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相平分的四邊形不一定是平行四邊形D.對角線互相垂直平分且相等的四邊形一定是正方形6.如圖,如果∠BAD=∠CAE,那么添加下列一個條件后,仍不能確定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=7.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.88.如圖,在△ABC中,點D,E,F(xiàn)分別是邊AB,AC,BC上的點,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶59.點P(-6,1)在雙曲線上,則k的值為()A.-6 B.6 C. D.10.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.12.如圖,分別以等邊三角形的每個頂點為圓心,邊長為半徑,在另兩個頂點之間作一段弧,三段弧圍成的曲邊三角形稱為“勒洛三角形”,若等邊三角形的邊長為2,則“勒洛三角形”的面積為_________.13.我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“圓中方形”問題:“今有圓田一段,中間有個方池,丈量田地待耕犁,恰好三分在記,池面至周有數(shù),每邊三步無疑,內(nèi)方圓徑若能知,堪作算中第一.”其大意為:有一塊圓形的田,中間有一塊正方形水池,測量出除水池外圓內(nèi)可耕地的面積恰好72平方步,從水池邊到圓周,每邊相距3步遠.如果你能求出正方形的邊長是x步,則列出的方程是_______________.14.如圖,D是反比例函數(shù)(k<0)的圖象上一點,過D作DE⊥x軸于E,DC⊥y軸于C,一次函數(shù)y=﹣x+m與的圖象都經(jīng)過點C,與x軸分別交于A、B兩點,四邊形DCAE的面積為4,則k的值為_______.15.掃地機器人能夠自主移動并作出反應,是因為它發(fā)射紅外信號反射回接收器,機器人在打掃房間時,若碰到障礙物則發(fā)起警報.若某一房間內(nèi)A、B兩點之間有障礙物,現(xiàn)將A、B兩點放置于平面直角坐標系xOy中(如圖),已知點A,B的坐標分別為(0,4),(6,4),機器人沿拋物線y=ax2﹣4ax﹣5a運動.若機器人在運動過程中只觸發(fā)一次報警,則a的取值范圍是_____.16.如圖,是的直徑,點在上,且,垂足為,,,則__________.17.當________時,的值最小.18.如圖,在平面直角坐標系中,第二象限內(nèi)的點P是反比例函數(shù)y=(k≠0)圖象上的一點,過點P作PA⊥x軸于點A,點B為AO的中點若△PAB的面積為3,則k的值為_____.三、解答題(共66分)19.(10分)體育課上,小明、小強、小華三人在足球場上練習足球傳球,足球從一個人傳到另個人記為踢一次.如果從小強開始踢,請你用列表法或畫樹狀圖法解決下列問題:(1)經(jīng)過兩次踢球后,足球踢到小華處的概率是多少?(2)經(jīng)過三次踢球后,足球踢回到小強處的概率是多少?20.(6分)如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A處海里的D處,此時救援艇在C處測得D處在南偏東的方向上.求C、D兩點的距離;捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,21.(6分)定義:在平面直角坐標系中,對于任意兩點,,若點滿足,,那么稱點是點,的融合點.例如:,,當點滿是,時,則點是點,的融合點,(1)已知點,,,請說明其中一個點是另外兩個點的融合點.(2)如圖,點,點是直線上任意一點,點是點,的融合點.①試確定與的關系式.②若直線交軸于點,當為直角三角形時,求點的坐標.22.(8分)如圖,在平面直角坐標系中,△ABC的頂點坐標為A(﹣1,1)、B(0,﹣2)、C(1,0),點P(0,2)繞點A旋轉180°得到點P1,點P1繞點B旋轉180°得到點P2,點P2繞點C旋轉180°得到點P3,(1)在圖中畫出點P1、P2、P3;(2)繼續(xù)將點P3繞點A旋轉180°得到點P4,點P4繞點B旋轉180°得到點P5,…,按此作法進行下去,則點P2020的坐標為.23.(8分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.(1)請直接寫出y與x之間的函數(shù)關系式和自變量x的取值范圍;(2)當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?(3)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?24.(8分)課外活動時間,甲、乙、丙、丁4名同學相約進行羽毛球比賽.(1)如果將4名同學隨機分成兩組進行對打,求恰好選中甲乙兩人對打的概率;(2)如果確定由丁擔任裁判,用“手心、手背”的方法在另三人中競選兩人進行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機的,求一次競選就能確定甲、乙進行比賽的概率.25.(10分)先化簡,再求值:,其中.26.(10分)閱讀材料,回答問題:材料題1:經(jīng)過某十字路口的汽車,可能直行,也可能向左轉或向右轉.如果這三種可能性的大小相同,求三輛汽車經(jīng)過這個十字路口時,至少要兩輛車向左轉的概率題2:有兩把不同的鎖和三把鑰匙,其中兩把鑰匙分別能打開這兩把鎖(一把鑰匙只能開一把鎖),第三把鑰匙不能打開這兩把鎖.隨機取出一把鑰匙開任意一把鎖,一次打開鎖的概率是多少?我們可以用“袋中摸球”的試驗來模擬題1:在口袋中放三個不同顏色的小球,紅球表示直行,綠球表示向左轉,黑球表示向右轉,三輛汽車經(jīng)過路口,相當于從三個這樣的口袋中各隨機摸出一球.問題:(1)事件“至少有兩輛車向左轉”相當于“袋中摸球”的試驗中的什么事件?(2)設計一個“袋中摸球”的試驗模擬題2,請簡要說明你的方案(3)請直接寫出題2的結果.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】由題意可以知道M(1,2),A(0,2.25),用待定系數(shù)法就可以求出拋物線的解析式,當y=0時就可以求出x的值,這樣就可以求出OB的值.【詳解】解:設拋物線的解析式為y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴拋物線的解析式為:y=-0.1(x-1)2+2.當y=0時,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故選:B.【點睛】本題是一道二次函數(shù)的綜合試題,考查了利用待定系數(shù)法求函數(shù)的解析式的運用,運用拋物線的解析式解決實際問題,解答本題是求出拋物線的解析式.2、B【解析】解:∵將拋物線y=﹣(x+1)2+1向右平移2個單位,∴新拋物線的表達式為y=﹣(x+1﹣2)2+1=﹣(x﹣1)2+1.故選B.3、A【分析】根據(jù)形如(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是因變量,自變量x的取值范圍是不等于0的一切實數(shù).分別對各選項進行分析即可.【詳解】A.是反比例函數(shù),正確;B.是二次函數(shù),錯誤;C.是一次函數(shù),錯誤;D.,y是的反比例函數(shù),錯誤.故選:A.【點睛】本題考查了反比例函數(shù)的定義.反比例函數(shù)解析式的一般形式為(k≠0),也可轉化為y=kx-1(k≠0)的形式,特別注意不要忽略k≠0這個條件.4、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.5、D【分析】根據(jù)矩形的判定、菱形的判定、平行四邊形和正方形的判定判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,原命題是假命題;B、對角線互相垂直的平行四邊形是菱形,原命題是假命題;C、對角線互相平分的四邊形一定是平行四邊形,原命題是假命題;D、對角線互相垂直平分且相等的四邊形一定是正方形,原命題是真命題;故選:D.【點睛】此題主要考查了命題與定理,正確把握特殊四邊形的判定方法是解題關鍵.6、C【分析】根據(jù)已知及相似三角形的判定方法對各個選項進行分析,從而得到最后答案.【詳解】BADCAE,A,B,D都可判定,選項C中不是夾這兩個角的邊,所以不相似.故選C.【點睛】考查相似三角形的判斷方法,掌握相似三角形常用的判定方法是解題的關鍵.7、B【解析】根據(jù)垂徑定理,構造直角三角形,連接OC,在RT△OCE中應用勾股定理即可.【詳解】試題解析:由題意連接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故選B.8、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故選A.點睛:若,則,.9、A【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征可直接得到答案.【詳解】解:∵點P()在雙曲線上,∴;故選:A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標特征,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.10、C【分析】根據(jù)圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數(shù).【詳解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.二、填空題(每小題3分,共24分)11、2【分析】把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是找出二次函數(shù)圖象上的點的坐標滿足的關系式.12、【分析】圖中勒洛三角形是由三塊相同的扇形疊加而成,其面積三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】解:過作于,∵是等邊三角形,,,,,,的面積為,,勒洛三角形的面積,故答案為:.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出勒洛三角形的面積三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.13、【分析】根據(jù)圓的面積-正方形的面積=可耕地的面積即可解答.【詳解】解:∵正方形的邊長是x步,圓的半徑為()步∴列方程得:.故答案為.【點睛】本題考查圓的面積計算公式,解題關鍵是找出等量關系.14、-1【詳解】解:∵的圖象經(jīng)過點C,∴C(0,1),將點C代入一次函數(shù)y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四邊形DCAE的面積為4,∴S矩形OCDE=4-1=1,∴k=-1故答案為:-1.15、﹣<a<【分析】根據(jù)題意可以知道拋物線與線段AB有一個交點,根據(jù)拋物線對稱軸及其與y軸的交點即可求解.【詳解】解:由題意可知:∵點A、B坐標分別為(0,1),(6,1),∴線段AB的解析式為y=1.機器人沿拋物線y=ax2﹣1ax﹣5a運動.拋物線對稱軸方程為:x=2,機器人在運動過程中只觸發(fā)一次報警,所以拋物線與線段y=1只有一個交點.所以拋物線經(jīng)過點A下方.∴﹣5a<1解得a>﹣.1=ax2﹣1ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合題意,舍去),a2=.當拋物線恰好經(jīng)過點B時,即當x=6,y=1時,36a﹣21a﹣5a=1,解得a=綜上:a的取值范圍是﹣<a<【點睛】本題考查二次函數(shù)的應用,關鍵在于熟悉二次函數(shù)的性質(zhì),結合圖形靈活運用.16、2【分析】先連接OC,在Rt△ODC中,根據(jù)勾股定理得出OC的長,即可求得答案.【詳解】連接OC,如圖,

∵CD=4,OD=3,,

在Rt△ODC中,

∴,∵,∴.故答案為:.【點睛】此題考查了圓的認識,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.17、【分析】根據(jù)二次根式的意義和性質(zhì)可得答案.【詳解】解:由二次根式的性質(zhì)可知,當時,取得最小值0故答案為2【點睛】本題考查二次根式的“雙重非負性”即“根式內(nèi)的數(shù)或式大于等于零”和“根式的計算結果大于等于零”18、-1.【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出的面積,再根據(jù)線段中點的性質(zhì)可知,最后根據(jù)雙曲線所在的象限即可求出k的值.【詳解】如圖,連接OP∵點B為AO的中點,的面積為3由反比例函數(shù)的幾何意義得則,即又由反比例函數(shù)圖象的性質(zhì)可知則解得故答案為:.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì)、線段的中點,熟記反比例函數(shù)的性質(zhì)是解題關鍵.三、解答題(共66分)19、(1);(2).【分析】(1)根據(jù)畫列表法或樹狀圖求概率;(2)根據(jù)畫列表法或樹狀圖求概率【詳解】解:(1)畫樹狀圖如下圖所示:由樹狀圖可知,(經(jīng)過兩次踢球后,足球踢到小華處).(2)畫樹狀圖如下圖所示:由樹狀圖可知,(經(jīng)過三次踢球后,足球踢回到小強處).【點睛】本題考查了根據(jù)畫樹狀圖求概率20、(1)CD兩點的距離是10海里;(2)0.08【分析】過點C、D分別作,,垂足分別為G,F(xiàn),根據(jù)直角三角形的性質(zhì)得出CG,再根據(jù)三角函數(shù)的定義即可得出CD的長;如圖,設漁政船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,根據(jù)三角函數(shù)表示出EH,在中,根據(jù)正弦的定義求值即可;【詳解】解:過點C、D分別作,,垂足分別為G,F(xiàn),在中,,海里,,四邊形ADFG是矩形,海里,海里,在中,,,,海里.答:CD兩點的距離是10海里;如圖,設漁船調(diào)整方向后t小時能與捕漁船相會合,由題意知,,,過點E作于點H,則,,,在中,.答:的正弦值是.【點睛】本題主要考查了解直角三角形的應用方向角問題,掌握解直角三角形的應用方向角問題是解題的關鍵.21、(1)點是點,的融合點;(2)①,②符合題意的點為,.【解析】(1)由題中融合點的定義即可求得答案.(2)①由題中融合點的定義可得,.②結合題意分三種情況討論:(ⅰ)時,畫出圖形,由融合點的定義求得點坐標;(ⅱ)時,畫出圖形,由融合點的定義求得點坐標;(ⅲ)時,由題意知此種情況不存在.【詳解】(1)解:,∴點是點,的融合點(2)解:①由融合點定義知,得.又∵,得∴,化簡得.②要使為直角三角形,可分三種情況討論:(i)當時,如圖1所示,設,則點為.由點是點,的融合點,可得或,解得,∴點.(ii)當時,如圖2所示,則點為.由點是點,的融合點,可得點.(iii)當時,該情況不存在.綜上所述,符合題意的點為,【點睛】本題是一次函數(shù)綜合運用題,涉及到勾股定理得運用,此類新定義題目,通常按照題設順序,逐次求解.22、(1)見解析;(2)(﹣2,﹣2)【分析】(1)利用網(wǎng)格特點和旋轉的性質(zhì)畫出點P1、P2、P3即可;(2)畫出P1~P6,尋找規(guī)律后即可解決問題.【詳解】解:(1)點P1、P2、P3如圖所示,(2)(﹣2,﹣2)解析:如圖所示:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2)P5(2,﹣2),P6(0,2)∵6次一個循環(huán)∴2020÷6=336...4∴P2020(﹣2,﹣2)【點睛】本題考查坐標與圖形的性質(zhì)、點的坐標等知識,解題的關鍵是循環(huán)探究問題的方法,屬于中考??碱}型.23、(1)y=﹣10x+740(44≤x≤52);(2)當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【分析】(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x﹣44)元,每天銷售量減少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;(2)利用每本的利潤乘以銷售量得到總利潤得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范圍確定銷售單價;(3)利用每本的利潤乘以銷售量得到總利潤得到w=(x﹣40)(﹣10x+740),再把它變形為頂點式,然后利用二次函數(shù)的性質(zhì)得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根據(jù)題意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,當x<57時,w隨x的增大而增大,而44≤x≤52,所以當x=52時,w有最大值,最大值為﹣10(52﹣57)2+2890=2640,答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【點睛】本題考查了二次函數(shù)的應用,一元二次方程的應用,解決二次函數(shù)應用類問題時關鍵是通過題意,確定出二次函數(shù)的解析式,然后利用二次函數(shù)的性質(zhì)確定其最大值;在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.24、(1);(2)【解析】分析:列舉出將4名同學隨機分成兩組進行對打所有可能的結果,找出甲乙兩人對打的情況數(shù),根據(jù)概率公式計算即可.畫樹狀圖寫出所有的情況,根據(jù)概率的求法計算概率.詳解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論