2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖南省師大附中數(shù)學(xué)九上期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.拋物線的頂點坐標(biāo)是()A.(3,5) B.(-3,-5) C.(-3,5) D.(3,-5)2.在平面直角坐標(biāo)系中,點(﹣3,2)關(guān)于原點對稱的點是()A.(2,﹣3) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)3.一個幾何體由若干個相同的正方體組成,其主視圖和左視圖如圖所示,則組成這個幾何體的正方體個數(shù)最小值為()A.5 B.6 C.7 D.84.如圖,△ABC的頂點均在⊙O上,若∠A=36°,則∠OBC的度數(shù)為()A.18° B.36° C.60° D.54°5.如圖,拋物線與軸交于、兩點,點在一次函數(shù)的圖像上,是線段的中點,連結(jié),則線段的最小值是()A. B. C. D.6.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°7.如圖,已知則添加下列一個條件后,仍無法判定的是()A. B. C. D.8.如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,AE⊥EF.有下列結(jié)論:①∠BAE=30°;②射線FE是∠AFC的角平分線;③CF=CD;④AF=AB+CF.其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個9.已知點P的坐標(biāo)為(3,-5),則點P關(guān)于原點的對稱點的坐標(biāo)可表示為()A.(3,5) B.(-3,5) C.(3,-5) D.(-3,-5)10.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:①;②;③;④⑤;其中正確結(jié)論的個數(shù)是()A. B. C. D.11.在x2□2xy□y2的空格□中,分別填上“+”或“-”,在所得的代數(shù)式中,能構(gòu)成完全平方式的概率是()A.1 B. C. D.12.若點,在反比例函數(shù)上,則的大小關(guān)系是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,將矩形繞點旋轉(zhuǎn)至矩形位置,此時的中點恰好與點重合,交于點.若,則的面積為__________.14.如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.15.一艘觀光游船從港口以北偏東的方向出港觀光,航行海里至處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東方向,馬上以海里每小時的速度前往救援,海警船到達(dá)事故船處所需的時間大約為________小時(用根號表示).16.計算sin60°tan60°-cos45°cos60°的結(jié)果為______.17.如圖,在平行四邊形中,點、在雙曲線上,點的坐標(biāo)是,點在坐標(biāo)軸上,則點的坐標(biāo)是___________.18.如圖,把△ABC沿AB邊平移到△A′B′C′的位置,它們的重疊部分(即圖中的陰影部分)的面積是△ABC的面積的一半,若AB=2,則此三角形移動的距離AA′=_______.三、解答題(共78分)19.(8分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標(biāo)出一個點Q,使.20.(8分)如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點A、C在坐標(biāo)軸上,△OCB繞點O順時針旋轉(zhuǎn)90°得到△ODE,點D在x軸上,直線BD交y軸于點F,交OE于點H,OC的長是方程x2-4=0的一個實數(shù)根.(1)求直線BD的解析式.(2)求△OFH的面積.(3)在y軸上是否存在點M,使以點B、D、M三點為頂點的三角形是等腰三角形?若存在,請直接寫出所有符合條件的點M的坐標(biāo);若不存在,不必說明理由.21.(8分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.(1)求證:DE=OE;(2)若CD∥AB,求證:BC是⊙O的切線;(3)在(2)的條件下,求證:四邊形ABCD是菱形.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與軸,軸的交點分別為和.(1)求此二次函數(shù)的表達(dá)式;(2)結(jié)合函數(shù)圖象,直接寫出當(dāng)時,的取值范圍.23.(10分)如圖,一次函數(shù)y1=k1x+b(k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)y2=(k2≠0)的圖象交于點A(m,1)與點B(﹣1,﹣4).(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)根據(jù)圖象說明,當(dāng)x為何值時,k1x+b﹣<0;(3)若動點P是第一象限內(nèi)雙曲線上的點(不與點A重合),連接OP,過點P作y軸的平行線交直線AB于點C,連接OC,若△POC的面積為3,求點P的坐標(biāo).24.(10分)為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學(xué)計劃對面積為運動場進(jìn)行塑膠改造.經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨立完成面積為的改造時,甲隊比乙隊少用天.(1)求甲、乙兩工程隊每天能完成塑膠改造的面積;(2)設(shè)甲工程隊施工天,乙工程隊施工天,剛好完成改造任務(wù),求與的函數(shù)解析式;(3)若甲隊每天改造費用是萬元,乙隊每天改造費用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費用最低?并求出最低的費用.25.(12分)如圖,是圓的直徑,點在圓上,分別連接、,過點作直線,使.求證:直線與圓相切.26.如圖,是的直徑,是弦,是弧的中點,過點作的切線交的延長線于點,過點作于點,交于點.(1)求證:;(2)若,,求的長.

參考答案一、選擇題(每題4分,共48分)1、C【解析】由題意根據(jù)二次函數(shù)y=a(x-h)2+k(a≠0)的頂點坐標(biāo)是(h,k),求出頂點坐標(biāo)即可.【詳解】解:∵;∴頂點坐標(biāo)為:(-3,5).故選:C.【點睛】本題考查二次函數(shù)的性質(zhì)和二次函數(shù)的頂點式.熟悉二次函數(shù)的頂點式方程y=a(x-h)2+k中的h、k所表示的意義是解決問題的關(guān)鍵.2、D【詳解】解:由兩個點關(guān)于原點對稱,則橫、縱坐標(biāo)都是原數(shù)的相反數(shù),得點(﹣3,2)關(guān)于原點對稱的點是(3,﹣2).故選D.【點睛】本題考查關(guān)于原點對稱的點的坐標(biāo).3、A【分析】根據(jù)題意分別找到2層組合幾何體的最少個數(shù),相加即可.【詳解】解:底層正方體最少的個數(shù)應(yīng)是3個,第二層正方體最少的個數(shù)應(yīng)該是2個,因此這個幾何體最少有5個小正方體組成,故選:A.【點睛】本題考查三視圖相關(guān),解決本題的關(guān)鍵是利用“主視圖瘋狂蓋,左視圖拆違章”找到所需最少正方體的個數(shù)進(jìn)行分析即可.4、D【解析】根據(jù)圓周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根據(jù)OB=OC,求得∠OBC=12(180°-∠O)=1故選:D點睛:此題主要考查了圓周角定理,解題時,根據(jù)同弧所對的圓周角等于圓心角的一半,求出圓心角,再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求解即可,解題關(guān)鍵是發(fā)現(xiàn)同弧所對的圓心角和圓周角,明確關(guān)系進(jìn)行計算.5、A【分析】先求得A、B兩點的坐標(biāo),設(shè),根據(jù)之間的距離公式列出關(guān)于的函數(shù)關(guān)系式,求得其最小值,即可求得答案.【詳解】令,則,解得:,∴A、B兩點的坐標(biāo)分別為:,設(shè)點的坐標(biāo)為,∴,∵,∴當(dāng)時,有最小值為:,即有最小值為:,∵A、B為拋物線的對稱點,對稱軸為y軸,∴O為線段AB中點,且Q為AP中點,∴.故選:A.【點睛】本題考查了二次函數(shù)與一次函數(shù)的綜合問題,涉及到的知識有:兩點之間的距離公式,三角形中位線的性質(zhì),二次函數(shù)的最值問題,利用兩點之間的距離公式求得的最小值是解題的關(guān)鍵.6、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應(yīng)用.7、A【分析】先根據(jù)∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理對各選項進(jìn)行逐一判定即可.【詳解】解:∵∠1=∠2,

∴∠BAC=∠DAE.A.,∠B與∠D的大小無法判定,∴無法判定△ABC∽△ADE,故本選項符合題意;B.,∴△ABC∽△ADE,故本選項不符合題意;C.∴△ABC∽△ADE,故本選項不符合題意;D.∴△ABC∽△ADE,故本選項不符合題意;故選:A【點睛】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關(guān)鍵.8、B【分析】根據(jù)點E為BC中點和正方形的性質(zhì),得出∠BAE的正切值,從而判斷①,再證明△ABE∽△ECF,利用有兩邊對應(yīng)成比例且夾角相等三角形相似即可證得△ABE∽△AEF,可判斷②③,過點E作AF的垂線于點G,再證明△ABE≌△AGE,△ECF≌△EGF,即可證明④.【詳解】解:∵E是BC的中點,∴tan∠BAE=,∴∠BAE30°,故①錯誤;∵四邊形ABCD是正方形,

∴∠B=∠C=90°,AB=BC=CD,

∵AE⊥EF,

∴∠AEF=∠B=90°,

∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,

∴∠BAE=∠CEF,在△BAE和△CEF中,,

∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③錯誤;設(shè)CF=a,則BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射線FE是∠AFC的角平分線,故②正確;過點E作AF的垂線于點G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正確.故選B.【點睛】此題考查了相似三角形的判定與性質(zhì)和全等三角形的判定和性質(zhì),以及正方形的性質(zhì).題目綜合性較強,注意數(shù)形結(jié)合思想的應(yīng)用.9、B【分析】由題意根據(jù)關(guān)于原點對稱點的坐標(biāo)特征即點的橫縱坐標(biāo)都互為相反數(shù)即可得出答案.【詳解】解:點P的坐標(biāo)為(3,-5)關(guān)于原點中心對稱的點的坐標(biāo)是(-3,5),故選:B.【點睛】本題考查點關(guān)于原點對稱的點,掌握關(guān)于原點對稱點的坐標(biāo)特征即橫縱坐標(biāo)都互為相反數(shù)是解題的關(guān)鍵.10、B【分析】利用特殊值法求①和③,根據(jù)圖像判斷出a、b和c的值判斷②和④,再根據(jù)對稱軸求出a和b的關(guān)系,再用特殊值法判斷⑤,即可得出答案.【詳解】令x=-1,則y=a-b+c,根據(jù)圖像可得,當(dāng)x=-1時,y<0,所以a-b+c<0,故①錯誤;由圖可得,a>0,b<0,c<0,所以abc>0,a-c>0,故②④正確;令x=-2,則y=4a-2b+c,根據(jù)圖像可得,當(dāng)x=-2時,y>0,所以4a-2b+c>0,故③正確;,所以-b=2a,∴a-b+c=a+2a+c=3a+c<0,故⑤錯誤;故答案選擇B.【點睛】本題考查的是二次函數(shù),難度偏高,需要熟練掌握二次函數(shù)的圖像與性質(zhì).11、C【解析】能夠湊成完全平方公式,則2xy前可是“-”,也可以是“+”,但y2前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構(gòu)成完全平方公式的有2種,所以概率為:.故答案為C點睛:讓填上“+”或“-”后成為完全平方公式的情況數(shù)除以總情況數(shù)即為所求的概率.此題考查完全平方公式與概率的綜合應(yīng)用,注意完全平方公式的形式.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、A【分析】由k<0可得反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,可知y3<0,y1>0,y2>0,根據(jù)反比例函數(shù)的增減性即可得答案.【詳解】∵k<0,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,∴y3<0,y1>0,y2>0,∵-3<-1,∴y1<y2,∴,故選:A.【點睛】本題考查反比例函數(shù)的性質(zhì),對于反比例函數(shù)y=(k≠0),當(dāng)k>0時,圖象在一、三象限,在各象限,y隨x的增大而減??;當(dāng)k<0時,圖象在二、四象限,在各象限內(nèi),y隨x的增大而增大;熟練掌握反比例函數(shù)的性質(zhì)是解題關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)旋轉(zhuǎn)后AC的中點恰好與D點重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD=30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE為30°,進(jìn)而得到∠EAC=∠ECA,利用等角對等邊得到AE=CE,設(shè)AE=CE=x,表示出AD與DE,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.【詳解】∵旋轉(zhuǎn)后AC的中點恰好與D點重合,

即AD=AC′=AC,

∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,

∴∠DAD′=60°,

∴∠DAE=30°,

∴∠EAC=∠ACD=30°,

∴AE=CE,

在Rt△ADE中,設(shè)AE=EC=x,∵AB=CD=6

∴DE=DC-EC=AB-EC=6-x,AD=CD×tan∠ACD=×6=2,

根據(jù)勾股定理得:x2=(6-x)2+(2)2,

解得:x=4,

∴EC=4,

則S△AEC=EC?AD=4故答案為:4【點睛】此題考查了旋轉(zhuǎn)的性質(zhì),含30度直角三角形的性質(zhì),勾股定理,以及等腰三角形的性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.14、45°【詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.15、【分析】過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C處所需的時間大約為:20÷40=(小時).故答案為.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中,作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.16、1【分析】直接利用特殊角的三角函數(shù)值分別代入求出答案.【詳解】解:原式=1【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.17、【分析】先根據(jù)點A的坐標(biāo)求出雙曲線的解析式,然后根據(jù)點B,C之間的縱坐標(biāo)之差和平行四邊形的性質(zhì)求出點D的坐標(biāo)即可.【詳解】∵點在雙曲線上∴∴∴∵點B,點在坐標(biāo)軸上∴B,C兩點的縱坐標(biāo)之差為1∵四邊形ABCD是平行四邊形∴AD//BC,AD=BC∴A,D兩點的縱坐標(biāo)之差為1∴D點的縱坐標(biāo)為∴∴∴的坐標(biāo)是故答案為【點睛】本題主要考查反比例函數(shù)及平行四邊形的性質(zhì),掌握待定系數(shù)法及平行四邊形的性質(zhì)是解題的關(guān)鍵.18、【分析】由題意易得陰影部分與△ABC相似,然后根據(jù)相似三角形的面積比是相似比的平方可求解.【詳解】解:把△ABC沿AB邊平移到△A′B′C′的位置,,它們的重疊部分(即圖中的陰影部分)的面積是△ABC的面積的一半,AB=2,即,;故答案為.【點睛】本題主要考查相似三角形的性質(zhì),熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì)的應(yīng)用,角平分線的性質(zhì)的應(yīng)用,勾股定理以及相似三角形的性質(zhì).20、(1)直線BD的解析式為:y=-x+1;(2)△OFH的面積為;(3)存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【分析】(1)根據(jù)求出坐標(biāo)點B(-2,2),點D(2,0),然后代入一次函數(shù)表達(dá)式:y=kx+b得,利用待定系數(shù)法即可求出結(jié)果.(2)通過面積的和差,S△OFH=S△OFD-S△OHD,即可求解.(3)分情況討論:當(dāng)點M在y軸負(fù)半軸與當(dāng)點M在y軸正半軸分類討論.【詳解】解:(1)x2-4=0,解得:x=-2或2,

故OC=2,即點C(0,2).∴OD=OC=2,即:D(2,0).又∵四邊形OABC是正方形.∴BC=OC=2,即:B(-2,2).將點B(-2,2),點D(2,0)代入一次函數(shù)表達(dá)式:y=kx+b得:,解得:,

故直線BD的表達(dá)式為:y=-x+1.(2)直線BD的表達(dá)式為:y=-x+1,則點F(0,1),得OF=1.∵點E(2,2),∴直線OE的表達(dá):y=x.解得:∴H∴S△OFH=S△OFD-S△OHD=-==(3)如圖:當(dāng)點M在y軸負(fù)半軸時.情況一:令BD=BM1,此時時,BD=BM1,此時是等腰三角形,此時M1(0,-2).情況二:令M2D=BD,此時,M2D2=BD2=,所以O(shè)M=,此時M2(0,-4).如圖:當(dāng)點M在y軸正半軸時.情況三:令M3D=BD,此時,M3D2=BD2=,所以O(shè)M=,此時M3(0,4).情況四:令BM4=BD,此時,BM42=BD2=,所以CM=,所以,OM=MC+OC=6,此時M4(0,6).綜上所述,存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【點睛】本題考查的是一次函數(shù)綜合運用,涉及到勾股定理、正方形的基本性質(zhì)、解一元二次方程等,其中(3),要注意分類求解,避免遺漏.21、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結(jié)論;(2)根據(jù)等腰三角形的性質(zhì)得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質(zhì)得到∠4=∠1,根據(jù)全等三角形的性質(zhì)得到∠CBO=∠CDO=90°,于是得到結(jié)論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質(zhì),同角的余角相等,等腰三角形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定,判斷出△ABO≌△CDE是解本題的關(guān)鍵.22、(1);(2)或.【分析】(1)把已知的兩點代入解析式即可求出二次函數(shù)的解析式;(2)由拋物線的對稱性與圖形即可得出時的取值范圍.【詳解】解:(1)∵拋物線與軸、軸的交點分別為和,∴.解得:.∴拋物線的表達(dá)式為:.(2)二次函數(shù)圖像如下,由圖像可知,當(dāng)時,的取值范圍是或.【點睛】此題主要考察二次函數(shù)的應(yīng)用.23、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)點P的坐標(biāo)為或(1,4)或(2,2)【分析】(1)把B點坐標(biāo)代入反比例函數(shù)解析式可求得k2的值,把點A(m,1)代入求得的反比例函數(shù)的解析式求得m,然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;(2)直接由A、B的坐標(biāo)根據(jù)圖象可求得答案;(3)設(shè)點P的坐標(biāo)為,則C(m,m﹣3),由△POC的面積為3,得到△POC的面積,求得m的值,即可求得P點的坐標(biāo).【詳解】解:(1)將B(﹣1,﹣4)代入得:k2=4∴反比例函數(shù)的解析式為,將點A(m,1)代入y2得,解得m=4,∴A(4,1)將A(4,1)、B(﹣1,﹣4)代入一次函數(shù)y1=k1x+b得解得k1=1,b=﹣3∴一次函數(shù)的解析式為y1=x﹣3;(2)由圖象可知:x<﹣1或0<x<4時,k1x+b﹣<0;(3)如圖:設(shè)點P的坐標(biāo)為,則C(m,m﹣3)∴,點O到直線PC的距離為m∴△POC的面積=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴點P的坐標(biāo)為或(1,4)或(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論