版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第45講獲取數(shù)據(jù)的基本途徑及抽樣方法考情分析1.知道獲取數(shù)據(jù)的基本途徑;2.了解總體、樣本、樣本容量的概念,了解數(shù)據(jù)的隨機性;3.了解簡單隨機抽樣的含義及其解決問題的過程,掌握兩種簡單隨機抽樣方法:抽簽法和隨機數(shù)法;4.了解分層隨機抽樣的特點和適用范圍,了解分層隨機抽樣的必要性,掌握各層樣本量比例分配的方法.知識梳理1.獲取數(shù)據(jù)的基本途徑獲取數(shù)據(jù)的基本途徑包括:統(tǒng)計報表和年鑒、社會調查、試驗設計、普查和抽樣、互聯(lián)網等.(1)統(tǒng)計報表是指各級企事業(yè)、行政單位按規(guī)定的表格形式、內容、時間要求報送程序,自上而下統(tǒng)一布置,提供統(tǒng)計資料的一種統(tǒng)計調查方式.(2)年鑒是以全面、系統(tǒng)、準確地記述上年度事物運動、發(fā)展狀況為主要內容的資料性工具書.匯輯一年內的重要時事、文獻和統(tǒng)計資料,按年度連續(xù)出版的工具書.2.總體、樣本、樣本容量要考察的對象的全體叫做總體,每一個考察對象叫做個體,從總體中被抽取的考察對象的集體叫做總體的一個樣本,樣本中個體的數(shù)目叫做樣本容量.3.簡單隨機抽樣(1)定義:從元素個數(shù)為N的總體中不放回地抽取容量為n的樣本,如果每一次抽取時總體中的各個個體有相同的可能性被抽到,這種抽樣方法叫做簡單隨機抽樣.(2)最常用的簡單隨機抽樣的方法:抽簽法和隨機數(shù)法.(3)應用范圍:總體中的個體數(shù)較少.4.分層抽樣(1)定義:在抽樣時,將總體中各個個體按某種特征分成若干個互不重疊的幾部分,每一部分叫做層,在各層中按層在總體中所占比例進行簡單隨機抽樣或系統(tǒng)抽樣,這種抽樣方法叫做分層抽樣.(2)應用范圍:當總體是由差異明顯的幾個部分組成時,往往選用分層抽樣.[微點提醒]1.不論哪種抽樣方法,總體中的每一個個體入樣的概率都是相同的.2.分層抽樣是按比例抽樣,每一層入樣的個體數(shù)為該層的個體數(shù)乘抽樣比.3.統(tǒng)一性是統(tǒng)計報表的基本特點.具體表現(xiàn)為:(1)統(tǒng)計報表的內容和報送的時間是由國家強制規(guī)定的,以保證調查資料的統(tǒng)一性.(2)統(tǒng)計報表的指標含義,計算方法、口徑是全國統(tǒng)一的.經典例題考點一總體、樣本、樣本容量【例1】為了解普陀區(qū)高中二年級學生的身高,有關部門從高二年級中抽200名學生測量他們的身高,然后根據(jù)這一部分學生的身高去估計普陀區(qū)所有高二學生的平均身高.寫出總體、個體、樣本和樣本容量.解總體是普陀區(qū)高二年級學生每人身高的全體,每名學生的身高是個體;從中抽取的200名學生的每人身高的集體是總體的一個樣本,樣本容量是200.規(guī)律方法要考察的對象的全體叫做總體,每一個考察對象叫做個體,抽取的考察對象的集體叫做樣本.所有的個體構成了總體,樣本取決于總體,樣本是總體的一部分,沒有個體就沒有總體,樣本的特征反映了總體的相應特征.考點二簡單隨機抽樣及其應用【例2】(1)下列抽取樣本的方式屬于簡單隨機抽樣的個數(shù)為()①從無限多個個體中抽取100個個體作為樣本.②盒子里共有80個零件,從中選出5個零件進行質量檢驗.在抽樣操作時,從中任意拿出一個零件進行質量檢驗后再把它放回盒子里.③從20件玩具中一次性抽取3件進行質量檢驗.④某班有56名同學,指定個子最高的5名同學參加學校組織的籃球賽.A.0 B.1 C.2 D.3(2)總體由編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.08 B.07 C.02 D.01解析(1)①不是簡單隨機抽樣,因為被抽取樣本的總體的個數(shù)是無限的,而不是有限的;②不是簡單隨機抽樣.因為它是有放回抽樣;③不是簡單隨機抽樣.因為這是“一次性”抽取,而不是“逐個”抽取;④不是簡單隨機抽樣.因為不是等可能抽樣.故選A.(2)從第1行第5列和第6列組成的數(shù)65開始由左到右依次選出的數(shù)為08,02,14,07,01,所以第5個個體編號為01.答案(1)A(2)D規(guī)律方法1.簡單隨機抽樣需滿足:(1)被抽取的樣本總體的個體數(shù)有限;(2)逐個抽??;(3)是不放回抽?。?4)是等可能抽取.2.簡單隨機抽樣常有抽簽法(適用于總體中個體數(shù)較少的情況)、隨機數(shù)法(適用于個體數(shù)較多的情況).考點三分層抽樣及其應用多維探究角度1求某層入樣的個體數(shù)【例3-1】某工廠生產甲、乙、丙、丁四種不同型號的產品,產量分別為200,400,300,100件,為檢驗產品的質量,現(xiàn)用分層抽樣的方法從以上所有的產品中抽取60件進行檢驗,則應從丙種型號的產品中抽取________件.解析因為樣本容量n=60,樣本總體N=200+400+300+100=1000,所以抽取比例為eq\f(n,N)=eq\f(60,1000)=eq\f(3,50).因此應從丙種型號的產品中抽取300×eq\f(3,50)=18(件).答案18角度2求總體或樣本容量【例3-2】(1)某中學有高中生960人,初中生480人,為了了解學生的身體狀況,采用分層抽樣的方法,從該校學生中抽取容量為n的樣本,其中高中生有24人,那么n等于()A.12 B.18 C.24 D.36(2)甲、乙兩套設備生產的同類型產品共4800件,采用分層抽樣的方法從中抽取一個容量為80的樣本進行質量檢測.若樣本中有50件產品由甲設備生產,則乙設備生產的產品總數(shù)為________件.解析(1)根據(jù)分層抽樣方法知eq\f(n,960+480)=eq\f(24,960),解得n=36.(2)由題設,抽樣比為eq\f(80,4800)=eq\f(1,60).設甲設備生產的產品為x件,則eq\f(x,60)=50,∴x=3000.故乙設備生產的產品總數(shù)為4800-3000=1800.答案(1)D(2)1800規(guī)律方法1.分層抽樣中分多少層,如何分層要視具體情況而定,總的原則是:層內樣本的差異要小,兩層之間的樣本差異要大,且互不重疊.2.進行分層抽樣的相關計算時,常用到的兩個關系(1)eq\f(樣本容量n,總體的個數(shù)N)=eq\f(該層抽取的個體數(shù),該層的個體數(shù));(2)總體中某兩層的個體數(shù)之比等于樣本中這兩層抽取的個體數(shù)之比.[方法技巧]1.統(tǒng)計報表有三個顯著優(yōu)點:來源可靠、回收率高、方式靈活.2.年鑒集辭典、手冊、年表、圖錄、書目、索引、文摘、表譜、統(tǒng)計資料、指南、便覽于一身,具有資料權威、反應及時、連續(xù)出版、功能齊全的特點.3.兩種抽樣方法的共同點都是等概率抽樣,即抽樣過程中每個個體被抽到的概率相等,體現(xiàn)了這兩種抽樣方法的客觀性和公平性.若樣本容量為n,總體容量為N,每個個體被抽到的概率是eq\f(n,N).4.分層抽樣適用于總體由差異明顯的幾部分組成的情況;分層后,在每一層抽樣時可采用簡單隨機抽樣.課時作業(yè)1.(2020·云南文山·高三其他(文))清源學校髙一、高二、高三年級學生的人數(shù)之比為,為了了解學校學生對數(shù)學學科的喜愛程度,現(xiàn)用分層抽樣的方法從該校高中三個年級中抽取一個容量為120的樣本,則應該從高三年級中抽?。ǎ┟麑W生.A.30 B.40 C.50 D.60【答案】A【解析】,2.(2020·五華·云南師大附中高三月考(理))某工廠為了對40個零件進行抽樣調查,將其編號為00,01,…,38,39.現(xiàn)要從中選出5個,利用下面的隨機數(shù)表,從第一行第3列開始,由左至右依次讀取,則選出來的第5個零件編號是()034743738636964736614698637162332616804560111410957774246762428114572042533237322707360751245179A.36 B.16 C.11 D.14【答案】C【解析】從題中給的隨機數(shù)表第一行第3列開始從左往右開始讀取,重復的數(shù)字只讀一次,讀到的小于40的編號分別為36,33,26,16,11,3.(2020·沙坪壩·重慶南開中學高三月考)為了解高三學生對“社會主義核心價值觀”的學習情況,現(xiàn)從全年級1004人中抽取50人參加測試.首先由簡單隨機抽樣剔除4名學生,然后剩余的1000名學生再用系統(tǒng)抽樣的方法抽取,則()A.每個學生入選的概率均不相等 B.每個學生入選的概率可能為0C.每個學生入選的概率都相等,且為 D.每個學生入選的概率都相等,且為【答案】C【解析】因為簡單隨機抽和系統(tǒng)抽樣都是等可能抽樣,所以每個學生入選的概率都相等,且入選的概率等于.4.(2020·河南高三月考(理))某工廠生產,,三種不同型號的產品,某月生產這三種產品的數(shù)量之比依次為,現(xiàn)用分層抽樣方法抽取一個容量為120的樣本,已知B種型號產品抽取了60件,則()A.3 B.4 C.5 D.6【答案】C【解析】由題意,,解得.5.(2020·山西運城·高三月考(文))教育部日前出臺《關于普通高中學業(yè)水平考試的實施意見》,根據(jù)意見,學業(yè)水平考試成績以“等級”或“合格、不合格”呈現(xiàn).計入高校招生錄取總成績的學業(yè)水平考試的3個科目成績以等級呈現(xiàn),其他科目一般以“合格、不合格”呈現(xiàn).若某省規(guī)定學業(yè)水平考試中歷史科各等級人數(shù)所占比例依次為:A等級15%,B等級35%,C等級30%,D、E等級共20%.現(xiàn)采用分層抽樣的方法,從某省參加歷史學業(yè)水平考試的學生中抽取100人作為樣本,則該校本中獲得A或B等級的學生中一共有().A.45人 B.60人 C.50人 D.90人【答案】C【解析】由題意,、等級人數(shù)所占比例依次為:等級,等級,則或等級所占比例為,人的樣本中,獲得或等級的學生一共有50人.6.(2020·西藏日喀則·高三其他(文))某中學有高中生3500人,初中生1500人,為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為n的樣本,已知從高中生中抽取140人,則n為()A.300 B.250 C.200 D.150【答案】C【解析】由題意得:,解得,7.(2020·廣東霞山·湛江二十一中高三月考)2021年高考實行選擇性考試,其中物理和歷史中選考1科(必須選1科而且只能選1科),再在化學、生物、政治、地理中選考2科(必須選2科而且只能選2科).某中學選考物理的考生199人,選考歷史的考生251人,未選化學的考生310人,既選物理又選化學的考生80人,則既選歷史又選化學的考生人數(shù)為()A.40 B.50 C.60 D.80【答案】C【解析】依題意可得總人數(shù)為450人,所以選化學的人數(shù)為人,所以既選歷史又選化學的人數(shù)為人.8.(2020·江西高三其他(文))某學校在校學生2000人,為了學生的“德、智、體”全面發(fā)展,學校舉行了跑步和登山比賽活動,每人都參加而且只參與其中一項比賽,各年級參與比賽的人數(shù)情況如下表:高一年級高二年級高三年級跑步人數(shù)abc登山人數(shù)xyz其中a∶b∶c=2∶5∶3,全校參與登山的人數(shù)占總人數(shù)的.為了了解學生對本次活動的滿意程度,從中抽取一個200人的樣本進行調查,則高三年級參與跑步的學生中應抽取()A.15人 B.30人 C.40人 D.45人【答案】D【解析】全校參與登山的人數(shù)是2000×=500,所以參與跑步的人數(shù)是1500,應抽?。?50,c=150×=45(人).9.(2020·湖北高三月考)從年起,北京考生的高考成績由語文、數(shù)學、外語門統(tǒng)一高考成績和考生選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.等級性考試成績位次由高到低分為、、、、,各等級人數(shù)所占比例依次為:等級,等級,等級,等級,等級.現(xiàn)采用分層抽樣的方法,從參加歷史等級性考試的學生中抽取人作為樣本,則該樣本中獲得或等級的學生人數(shù)為()A.55 B.80 C.90 D.110【答案】D【解析】設該樣本中獲得或等級的學生人數(shù)為,則10.(2020·寧夏利通·吳忠中學高一期中)總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.08 B.07 C.02 D.01【答案】D【解析】從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字中小于20的編號依次為08,02,14,07,02,01,.其中第二個和第四個都是02,重復.可知對應的數(shù)值為08,02,14,07,01,則第5個個體的編號為0111.(2020·廣西高三其他(理))總體由編號為01,02,,49,50的50個個體組成,利用下面的隨機數(shù)表選取6個個體,選取方法是從隨機數(shù)表第6行的第9列和第10列數(shù)字開始從左到右依次選取兩個數(shù)字,則選出的第4個個體的編號為附:第6行至第9行的隨機數(shù)表27486198716441487086288885191620747701111630240429797991968351253211491973064916767787339974673226357900337091601620388277574950A.3 B.19 C.38 D.20【答案】B【解析】解:從隨機數(shù)表第6行的第9列和第10列數(shù)字開始從左到右依次選取兩個數(shù)字,位于01至50中間,含端點,則這四個數(shù)為:41、48、28,19,12.(2020·山西大同·高三月考(理))中國傳統(tǒng)文化是中華民族智慧的結晶,是中華民族的歷史遺產在現(xiàn)實生活中的展現(xiàn).為弘揚中華民族傳統(tǒng)文化,某校學生會為了解本校高一1000名學生的課余時間參加傳統(tǒng)文化活動的情況,隨機抽取50名學生進行調查.將數(shù)據(jù)分組整理后,列表如下:參加場數(shù)01234567參加人數(shù)占調查人數(shù)的百分比8%10%20%26%18%%4%2%以下四個結論中正確的是().A.表中的數(shù)值為10B.估計該校高一學生參加傳統(tǒng)文化活動次數(shù)不高于2場的學生約為180人C.估計該校高一學生參加傳統(tǒng)文化活動次數(shù)不低于4場的學生約為360人D.若采用系統(tǒng)抽樣方法進行調查,從該校高一1000名學生中抽取容量為50的樣本,則分段間隔為25【答案】C【解析】A選項,由題意可得,,則;故A錯;B選項,由題意可得,樣本中該校高一學生參加傳統(tǒng)文化活動次數(shù)不高于2場的學生占比為,則該校高一學生參加傳統(tǒng)文化活動次數(shù)不高于2場的學生約為人;故B錯;C選項,由題意,樣本中該校高一學生參加傳統(tǒng)文化活動次數(shù)不低于4場的學生占比為,則該校高一學生參加傳統(tǒng)文化活動次數(shù)不低于4場的學生約為360人;故C正確;D選項,從若采用系統(tǒng)抽樣方法進行調查,從該校高一1000名學生中抽取容量為50的樣本,則分段間隔為;故D錯.13.(2020·山西長治·高三月考(文))由于疫情期間大多數(shù)學生都進行網上上課,我校高一、高二、高三共有學生1800名,為了了解同學們對“釘釘”授課軟件的意見,計劃采用分層抽樣的方法從這1800名學生中抽取一個容量為72的樣本,若從高一、高二、高三抽取的人數(shù)恰好是從小到大排列的連續(xù)偶數(shù),則我校高三年級的人數(shù)為()A.800 B.750 C.700 D.650【答案】D【解析】設從高三年級抽取的學生人數(shù)為2x人,則從高二、高一年級抽取的人數(shù)分別為2x-2,2x-4,由題意可得設我校高三年級的學生人數(shù)為N,再根據(jù)求得,14.(2020·上海市七寶中學高三其他)在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)相應的癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)名患者的相關信息,得到如下表格:潛伏期(單位:天)人數(shù)已知該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過天為標準進行分層抽樣,若從上述名患者中抽取人,得到如下聯(lián)表.潛伏期天潛伏期天總計歲以上(含歲)①②歲以下③則表格中的位置分別應填入數(shù)字是()A.①;②;③ B.①;②;③C.①;②;③ D.①;②;③【答案】C【解析】由分層抽樣可知,從上述名患者中抽取人,其中潛伏期天的人數(shù)為,所以,①處應填的數(shù)字為,②處應填的數(shù)字為,③處應填的數(shù)字為.15.(2020·東北育才學校高三其他(理))某地區(qū)甲?乙?丙?丁四所高中分別有120,150,180,150名高三學生參加某次數(shù)學調研考試,為了解學生能力水平,現(xiàn)制定以下兩種卷面分析方案:方案①;從這600名學生的試卷中抽取一個容量為200的樣本進行分析:方案②:丙校參加調研考試的學生中有30名數(shù)學培優(yōu)生,從這些培優(yōu)生的試卷中抽取10份試看進行分析.完成這兩種方案宜采用的抽樣方法依次是()A.分層抽樣法?系統(tǒng)抽樣法 B.分層抽樣法?簡單隨機抽樣法C.系統(tǒng)抽樣法?分層抽樣法 D.簡單隨機抽樣法?分層抽樣法【答案】B【解析】①四所學校,學生有差異,故①使用分層抽樣;②在同一所學校,且人數(shù)較少,所以可使用簡單隨機抽樣.16.(2020·陜西高三二模(文))總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.01【答案】D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.17.(2020·湖北武昌·高三其他(文))某小區(qū)為了調查本小區(qū)業(yè)主對物業(yè)服務滿意度的真實情況,對本小區(qū)業(yè)主進行了調查,調查中問了兩個問題1:你的手機尾號是不是奇數(shù)?問題2:你是否滿意物業(yè)的服務?調查者設計了一個隨機化裝置,其中裝有大小、形狀和質量完全相同的白球和紅球,每個被調查者隨機從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個問題,摸到紅球的業(yè)主回答第二個問題,回答“是”的人往一個盒子中放一個小石子,回答“否”的人什么都不要做由于問題的答案只有“是”和“否”,而且回答的是哪個問題別人并不知道,因此被調查者可以毫無顧慮地給出符合實際情況的答案.已知某小區(qū)80名業(yè)主參加了問卷,且有47名業(yè)主回答了“是”,由此估計本小區(qū)對物業(yè)服務滿意的百分比大約為()A.85% B.75% C.63.5% D.67.5%【答案】D【解析】要調查80名居民,在準備的兩個問題中每一個問題被問到的概率相同,第一個問題可能被詢問40次,在被詢問的40人中有20人手機號是奇數(shù),而有47人回答了“是”,估計有27個人回答是否滿意物業(yè)的服務時回答了“是”,在40人中有27個人滿意服務,估計本小區(qū)對物業(yè)服務滿意的百分比,18.(多選題)(2020·江蘇啟東中學高一開學考試)為了了解參加運動會的名運動員的年齡情況,從中抽取了名運動員的年齡進行統(tǒng)計分析.就這個問題,下列說法中正確的有()A.名運動員是總體; B.所抽取的名運動員是一個樣本;C.樣本容量為; D.每個運動員被抽到的機會相等.【答案】CD【解析】由已知可得,名運動員的年齡是總體,名運動員的年齡是樣本,總體容量為,樣本容量為,在整個抽樣過程中每個運動員被抽到的機會均為,所以A、B錯誤,C、D正確.19.(多選題)(2020·江蘇泗洪·高一月考)(多選)某中學高一年級有20個班,每班50人;高二年級有30個班,每班45人.甲就讀于高一,乙就讀于高二.學校計劃從這兩個年級中共抽取235人進行視力調查,下列說法中正確的有()A.應該采用分層隨機抽樣法B.高一、高二年級應分別抽取100人和135人C.乙被抽到的可能性比甲大D.該問題中的總體是高一、高二年級的全體學生的視力【答案】ABD【解析】由于各年級的年齡段不一樣,因此應采用分層隨機抽樣法.由于比例為,因此高一年級1000人中應抽取100人,高二年級1350人中應抽取135人,甲、乙被抽到的可能性都是,因此只有C不正確,故應選ABD.20.((多選題)2020·山東費縣·高三期末)下列說法正確的是()A.從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣B.某地氣象局預報:5月9日本地降水概率為,結果這天沒下雨,這表明天氣預報并不科學C.在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好D.在回歸直線方程中,當解釋變量每增加1個單位時,預報變量增加0.1個單位【答案】CD【解析】對A,分層抽樣為根據(jù)樣本特征按比例抽取,從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測不滿足.故A錯誤.對B,降水概率為,但仍然有的概率不下雨,故B錯誤.對C,在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好正確.對D,回歸直線方程中的系數(shù)為0.1,故當解釋變量每增加1個單位時,預報變量增加0.1個單位正確.21.(2020·湖南高三其他(文))疫情爆發(fā)以來,相關疫苗企業(yè)發(fā)揮專業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024裝修項目施工協(xié)議文本
- 2024年服務行業(yè)招標代理協(xié)議樣本
- 2024年孵化空間租賃協(xié)議格式
- 普通磚檢測原始記錄表
- 回收包裝合同范本
- 演出合同范本續(xù)簽
- 襪子合同范本
- 單價包干 合同范本
- 護理用品合同范本
- 承包卸貨 合同范本
- 第七章課程概述
- 2024《公共基礎知識必刷300題》題庫帶答案(輕巧奪冠)
- 創(chuàng)新設計前沿-知到答案、智慧樹答案
- 人力資源外包投標方案
- MOOC 實驗室安全學-武漢理工大學 中國大學慕課答案
- 基于人工智能的文化遺產保護與傳承策略
- 2024-2029年中國酒店行業(yè)發(fā)展分析及發(fā)展前景與趨勢預測研究報告
- 2024年全國法院檢察院書記員招聘筆試參考題庫附帶答案詳解
- 地理滑坡泥石流省公開課一等獎全國示范課微課金獎課件
- 2024年江西吉安市城市建設投資開發(fā)有限公司招聘筆試參考題庫含答案解析
- 營銷商務類管培生
評論
0/150
提交評論