安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷_第1頁
安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷_第2頁
安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷_第3頁
安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷_第4頁
安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省安慶市白澤湖中學2024屆高考備考沖刺階段數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年某省將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.2.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.3.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.4.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.55.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.7.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.68.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.409.某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同10.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.211.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.12.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.14.若函數(shù)為偶函數(shù),則.15.若實數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82818.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數(shù)的取值范圍.19.(12分)設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列20.(12分)在平面直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項的和.22.(10分)如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為,求λ的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.2、D【解題分析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【題目詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【題目點撥】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.3、D【解題分析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,,由此即可得到本題答案.【題目詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,,所以是函數(shù)的一條對稱軸,故選:D【題目點撥】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.4、D【解題分析】

由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【題目詳解】由題意.故選:D.【題目點撥】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.5、C【解題分析】

根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【題目詳解】解:若{an}是等比數(shù)列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【題目點撥】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關(guān)鍵.6、D【解題分析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【題目詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【題目點撥】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學生轉(zhuǎn)化與劃歸的思想,是一道中檔題.7、C【解題分析】

根據(jù)列方程,由此求得的值,進而求得.【題目詳解】由于,所以,即,解得.所以所以.故選:C【題目點撥】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎(chǔ)題.8、D【解題分析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=409、A【解題分析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【題目詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【題目點撥】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.10、A【解題分析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【題目詳解】.故選:.【題目點撥】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.11、A【解題分析】

推導出,分別取的中點,連結(jié),則,推導出,從而,進而四面體的體積為,由此能求出結(jié)果.【題目詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【題目點撥】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.12、A【解題分析】

聯(lián)立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結(jié)果.【題目詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【題目點撥】本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【題目詳解】,,,,.故答案為:.【題目點撥】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.14、1【解題分析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點:函數(shù)的奇偶性.【方法點晴】本題考查導函數(shù)的奇偶性以及邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取.15、【解題分析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【題目詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【題目點撥】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.16、【解題分析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應填:考點:1、程序框圖;2、定積分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(guān)(Ⅲ)見解析,【解題分析】

(Ⅰ)直接根據(jù)頻率和為1計算得到答案.(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學期望得到答案.【題目詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(guān)(Ⅲ)的取值為所以的分布列為期望.【題目點撥】本題考查了獨立性檢驗,分布列,數(shù)學期望,意在考查學生的計算能力和綜合應用能力.18、(1)(2)【解題分析】

(1)當時,,當或時,,所以可轉(zhuǎn)化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數(shù)的取值范圍為.19、(1)an=(2)Tn【解題分析】

(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得b【題目詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【題目點撥】用遞推關(guān)系an=Sn-20、(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解題分析】

(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進行求解.【題目詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點對應的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.21、(1)(2)【解題分析】

(1)由基本量法,求出公比后可得通項公式;(2)求出,用裂項相消法求和.【題目詳解】解:(1)設(shè)等比數(shù)列的公比為又因為,所以解得(舍)或所以,即(2)據(jù)(1)求解知,,所以所以【題目點撥】本題考查求等比數(shù)列的通項公式,考查裂項相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務必掌握.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論