2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年蘇南京一中學(xué)數(shù)學(xué)九年級第一學(xué)期期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.在同一時刻,身高米的小強在陽光下的影長為米,一棵大樹的影長為米,則樹的高度為()A.米 B.米 C.米 D.米2.《九章算術(shù)》中有一題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是:“今有直角三角形,勾(短直角邊)長為步,股(長直角邊)長為步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是()A.步 B.步 C.步 D.步3.已知y=(m+2)x|m|+2是關(guān)于x的二次函數(shù),那么m的值為()A.﹣2 B.2 C.±2 D.04.圓錐的底面半徑是5cm,側(cè)面展開圖的圓心角是180°,圓錐的高是()A.5cm B.10cm C.6cm D.5cm5.如圖,在中,是直徑,點是上一點,點是弧的中點,于點,過點的切線交的延長線于點,連接,分別交,于點.連接,關(guān)于下列結(jié)論:①;②;③點是的外心,其中正確結(jié)論是()A.①② B.①③ C.②③ D.①②③6.如圖,將繞點按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)為()A. B. C. D.7.如圖,△ABC是一塊銳角三角形材料,高線AH長8cm,底邊BC長10cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為()A.40cm2 B.20cm2C.25cm2 D.10cm28.在一個不透明的盒子中有大小均勻的黃球與白球共12個,若從盒子中隨機(jī)取出一個球,若取出的球是白球的概率是,則盒子中白球的個數(shù)是().A.3 B.4 C.6 D.89.如圖,l1∥l2∥l3,若,DF=6,則DE等于()A.3 B.3.2 C.3.6 D.410.拋物線y=x2﹣2x+3的頂點坐標(biāo)是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)二、填空題(每小題3分,共24分)11.使函數(shù)有意義的自變量的取值范圍是___________.12.《九章算術(shù)》作為古代中國乃至東方的第一部自成體系的數(shù)學(xué)專著,與古希臘的《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》中記載有一問題“今有圓材埋在壁中,不知大?。凿忎徶?,深一寸,鋸道長一尺,問徑幾何?”小輝同學(xué)根據(jù)原文題意,畫出圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑為______寸.13.如圖,在中,,,,點D、E分別是AB、AC的中點,CF是的平分線,交ED的延長線于點F,則DF的長是______.14.如圖,△ABC的外心的坐標(biāo)是____.15.比較sin30°、sin45°的大小,并用“<”連接為_____.16.,兩點都在二次函數(shù)的圖像上,則的大小關(guān)系是____________.17.已知△ABC中,AB=10,AC=2,∠B=30°,則△ABC的面積等于_____.18.已知兩個相似三角形與的相似比為1.則與的面積之比為________.三、解答題(共66分)19.(10分)如圖,是的直徑,點,是上兩點,且,連接,,過點作交延長線于點,垂足為.(1)求證:是的切線;(2)若,求的半徑.20.(6分)如圖,港口位于港口的南偏西方向,燈塔恰好在的中點處,一艘海輪位于港口的正南方向,港口的正東方向處,它沿正北方向航行到達(dá)處,側(cè)得燈塔在北偏西方向上.求此時海輪距離港口有多遠(yuǎn)?21.(6分)如圖,拋物線與直線交于A、B兩點.點A的橫坐標(biāo)為-3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.(1)求拋物線的解析式;(2)當(dāng)m為何值時,;(3)是否存在點P,使△PAD是直角三角形,若存在,求出點P的坐標(biāo);若不存在,說明理由.22.(8分)某射擊隊教練為了了解隊員訓(xùn)練情況,從隊員中選取甲、乙兩名隊員進(jìn)行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)23.(8分)解方程組:24.(8分)某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):①函數(shù)圖象與x軸有個交點,所以對應(yīng)的方程x2﹣2|x|=0有個實數(shù)根;②方程x2﹣2|x|=2有個實數(shù)根.③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是.25.(10分)如圖,在中,是上的高,.(1)求證:;(2)若,求的長.26.(10分)如圖,在平面直角坐標(biāo)系中,已知三個頂點的坐標(biāo)分別是,,.(1)以點為位似中心,將縮小為原來的得到,請在軸右側(cè)畫出;(2)的正弦值為.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)在同一時刻,物高和影長成正比,由已知列出比例式即可求得結(jié)果.【詳解】解:∵在同一時刻,∴小強影長:小強身高=大樹影長:大樹高,即0.8:1.6=4.8:大樹高,解得大樹高=9.6米,故選:D.【點睛】本題考查了相似三角形在測量高度是的應(yīng)用,把實際問題抽象到相似三角形中,利用相似三角形的性質(zhì)解決問題是解題的關(guān)鍵是.2、A【分析】根據(jù)勾股定理求出直角三角形的斜邊,即可確定出內(nèi)切圓半徑,進(jìn)而得出直徑.【詳解】根據(jù)勾股定理,得斜邊為,則該直角三角形能容納的圓形(內(nèi)切圓)半徑(步),即直徑為6步,故答案為A.【點睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心,熟練掌握,即可解題.3、B【解析】試題解析:是關(guān)于的二次函數(shù),解得:故選B.4、A【解析】設(shè)圓錐的母線長為R,根據(jù)圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可母線長,然后利用勾股定理求得圓錐的高即可.【詳解】設(shè)圓錐的母線長為R,根據(jù)題意得2π?5,解得R=1.即圓錐的母線長為1cm,∴圓錐的高為:5cm.故選:A.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.5、C【分析】由于與不一定相等,根據(jù)圓周角定理可知①錯誤;連接OD,利用切線的性質(zhì),可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,可知②正確;先由垂徑定理得到A為的中點,再由C為的中點,得到,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,可知③正確;【詳解】∵在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,∴=≠,∴∠BAD≠∠ABC,故①錯誤;連接OD,則OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90,∠EPA+∠EAP=∠EAP+∠GPD=90,∴∠GPD=∠GDP;∴GP=GD,故②正確;∵弦CF⊥AB于點E,∴A為的中點,即,又∵C為的中點,∴,∴,∴∠CAP=∠ACP,∴AP=CP.∵AB為圓O的直徑,∴∠ACQ=90,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,∴P為Rt△ACQ的外心,故③正確;故選C.【點睛】此題是圓的綜合題,其中涉及到切線的性質(zhì),圓周角定理,垂徑定理,圓心角、弧、弦的關(guān)系定理,相似三角形的判定與性質(zhì),以及三角形的外接圓與圓心,平行線的判定,熟練掌握性質(zhì)及定理是解決本題的關(guān)鍵.6、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論.【詳解】解:∵將繞點按逆時針方向旋轉(zhuǎn)后得到,

∴,

∴,

故選:A.【點睛】本題考查了三角形內(nèi)角和定理,旋轉(zhuǎn)的性質(zhì)的應(yīng)用,能求出∠ACD的度數(shù)是解此題的關(guān)鍵.7、B【解析】設(shè)矩形DEFG的寬DE=x,根據(jù)相似三角形對應(yīng)高的比等于相似比列式求出DG,再根據(jù)矩形的面積列式整理,然后根據(jù)二次函數(shù)的最值問題解答即可.【詳解】如圖所示:設(shè)矩形DEFG的寬DE=x,則AM=AH-HM=8-x,

∵矩形的對邊DG∥EF,

∴△ADG∽△ABC,∴,即,解得DG=(8-x),

四邊形DEFG的面積=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,

所以,當(dāng)x=4,即DE=4時,四邊形DEFG最大面積為10cm1.

故選B.【點睛】考查了相似三角形的應(yīng)用,二次函數(shù)的最值問題,根據(jù)相似三角形的對應(yīng)高的比等于相似比用矩形DEFG的寬表示出長是解題的關(guān)鍵.8、B【分析】根據(jù)白、黃球共有的個數(shù)乘以白球的概率即可解答.【詳解】由題意得:12×=4,即白球的個數(shù)是4.故選:B.【點睛】本題考查概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.9、C【解析】試題解析:根據(jù)平行線分線段成比例定理,可得:設(shè)解得:故選C.10、C【分析】把拋物線解析式化為頂點式可求得答案.【詳解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴頂點坐標(biāo)為(1,2),故選:C.【點睛】本題考查了拋物線的頂點坐標(biāo)的求解,解題的關(guān)鍵是熟悉配方法.二、填空題(每小題3分,共24分)11、且【分析】根據(jù)二次根式的性質(zhì)和分式的性質(zhì)即可得.【詳解】由二次根式的性質(zhì)和分式的性質(zhì)得解得故答案為:且.【點睛】本題考查了二次根式的性質(zhì)、分式的性質(zhì),二次根式的被開方數(shù)為非負(fù)數(shù)、分式的分母不能為零是常考知識點,需重點掌握.12、1.【分析】設(shè)的半徑為,在中,,則有,解方程即可.【詳解】設(shè)的半徑為.在中,,則有,解得,∴的直徑為1寸,故答案為1.【點睛】本題考查垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.13、4【分析】勾股定理求AC的長,中位線證明EF=EC,DE=2.5即可解題.【詳解】解:在中,,,∴AC=13(勾股定理),∵點、分別是、的中點,∴DE=2.5(中位線),DE∥BC,∵是的平分線,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【點睛】本題考查了三角形的中位線,等角對等邊,勾股定理,中等難度,證明EF=EC是解題關(guān)鍵.14、【解析】試題解析:∵△ABC的外心即是三角形三邊垂直平分線的交點,∴作圖得:∴EF與MN的交點O′即為所求的△ABC的外心,∴△ABC的外心坐標(biāo)是(﹣2,﹣1).15、<.【解析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.16、>【分析】根據(jù)二次函數(shù)的性質(zhì),可以判斷y1,y2的大小關(guān)系,本題得以解決.【詳解】∵二次函數(shù),∴當(dāng)x<0時,y隨x的增大而增大,∵點在二次函數(shù)的圖象上,∵-1>-2,∴>,故答案為:>.【點睛】本題考查二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.17、15或10【分析】作AD⊥BC交BC(或BC延長線)于點D,分AB、AC位于AD異側(cè)和同側(cè)兩種情況,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的長,繼而就兩種情況分別求出BC的長,根據(jù)三角形的面積公式求解可得.【詳解】解:作AD⊥BC交BC(或BC延長線)于點D,①如圖1,當(dāng)AB、AC位于AD異側(cè)時,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,則BC=BD+CD=6,∴S△ABC=?BC?AD=×6×5=15;②如圖2,當(dāng)AB、AC在AD的同側(cè)時,由①知,BD=5,CD=,則BC=BD-CD=4,∴S△ABC=?BC?AD=×4×5=10.綜上,△ABC的面積是15或10,故答案為15或10.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握三角函數(shù)的運用、分類討論思想的運算及勾股定理.18、2【分析】根據(jù)相似三角形的面積比等于相似比的平方,即可求得答案.【詳解】解:∵兩個相似三角形的相似比為1,

∴這兩個三角形的面積之比為2.

故答案為:2.【點睛】此題考查了相似三角形的性質(zhì).注意熟記定理是解此題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)圓O的半徑為1【分析】(1)連結(jié)OC,由根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關(guān)系得,在Rt△ACB中,利用含30度的直角三角形三邊的關(guān)系得AB=2BC=1,從而求出⊙O的半徑.【詳解】解:(1)證明:連結(jié)OC,如圖∵弧FC=弧BC∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴0C//AF,∵CD⊥AF,∴0C⊥CD,∴CD是圓O的切線;(2)連結(jié)BC,如圖,∵AB為直徑,∴∠ACB=90°,∵,∴∠BOC=×110°=60°,∴∠BAC=30?,∴∠DAC=30?,在RtΔADC中,CD=,∴AC=2CD=,在RtΔACB中,BC=AC==1,∴AB=2BC=16,∴圓O的半徑為1.【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了圓周角定理和含30度的直角三角形三邊的關(guān)系.20、海輪距離港口的距離為【分析】過點C作CF⊥AD于點F,設(shè)CF=x,根據(jù)正切的定義用x表示出AF,根據(jù)等腰直角三角形的性質(zhì)用x表示出EF,根據(jù)三角形中位線定理列出方程,解方程得到答案.【詳解】解:如圖,過點作于點.設(shè),表示出利用,求出列方程:求出求出答:海輪距離港口的距離為.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,掌握方向角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.21、(1)y=x1+4x-1;(1)∴m=,-1,或-3時S四邊形OBDC=1SS△BPD【解析】試題分析:(1)由x=0時帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時,代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;(1)連結(jié)OP,由P點的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和1S△BPD建立方程求出其解即可.(3)如圖1,當(dāng)∠APD=90°時,設(shè)出P點的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.試題解析:∵y=x-1,∴x=0時,y=-1,∴B(0,-1).當(dāng)x=-3時,y=-4,∴A(-3,-4).∵y=x1+bx+c與直線y=x-1交于A、B兩點,∴∴∴拋物線的解析式為:y=x1+4x-1;(1)∵P點橫坐標(biāo)是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如圖1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如圖1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3時S四邊形OBDC=1S△BPD;)如圖1,當(dāng)∠APD=90°時,設(shè)P(a,a1+4a-1),則D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,當(dāng)y=0時,x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x軸,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如圖3,當(dāng)∠PAD=90°時,作AE⊥x軸于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x軸,∵PC⊥x軸,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)與點A重合,舍去,∴P(-1,-5).考點:二次函數(shù)綜合題.22、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【分析】(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進(jìn)行比較,即可得出答案;

(3)根據(jù)方差公式進(jìn)行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;

在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;

故答案為8,6和9;

(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數(shù)是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩(wěn)定;

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。?/p>

故答案為變?。军c睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術(shù)平均數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論