版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆河北省石家莊市43中學數(shù)學九年級第一學期期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.將拋物線向左平移2個單位后所得到的拋物線為()A. B.C. D.2.拋物線的對稱軸是()A. B. C. D.3.下列各點中,在反比例函數(shù)圖像上的是()A. B. C. D.4.如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關系是().A.相離 B.相切 C.相交 D.相切或相交5.已知拋物線,則下列說法正確的是()A.拋物線開口向下 B.拋物線的對稱軸是直線C.當時,的最大值為 D.拋物線與軸的交點為6.一元二次方程中至少有一個根是零的條件是()A.且 B. C.且 D.7.拋物線y=3(x+2)2﹣(m2+1)(m為常數(shù))的頂點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知圓心角為120°的扇形的弧長為6π,該扇形的面積為()A. B. C. D.9.下列命題是真命題的個數(shù)是().①64的平方根是;②,則;③三角形三條內(nèi)角平分線交于一點,此點到三角形三邊的距離相等;④三角形三邊的垂直平分線交于一點.A.1個 B.2個 C.3個 D.4個10.下列對于二次根式的計算正確的是()A. B.2=2C.2=2 D.2=11.如圖,⊙O的直徑長10,弦AB=8,M是弦AB上的動點,則OM的長的取值范圍是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<512.如圖,矩形的對角線交于點,已知,,下列結(jié)論錯誤的是()A. B. C. D.二、填空題(每題4分,共24分)13.二次函數(shù)y=2x2﹣4x+4的圖象如圖所示,其對稱軸與它的圖象交于點P,點N是其圖象上異于點P的一點,若PM⊥y軸,MN⊥x軸,則=_____.14.已知關于的一元二次方程的一個根是2,則的值是:______.15.已知拋物線y=x2﹣x﹣1與x軸的一個交點為(m,0),則代數(shù)式m2﹣m+5=_____.16.如圖,⊙的半徑于點,連接并延長交⊙于點,連接.若,則的長為___.17.如圖,小穎周末晚上陪父母在斜江綠道上散步,她由路燈下A處前進3米到達B處時,測得影子BC長的1米,已知小穎的身高1.5米,她若繼續(xù)往前走3米到達D處,此時影子DE長為____米.18.一家鞋店對上一周某品牌女鞋的銷量統(tǒng)計如下:尺碼(厘米)2222.52323.52424.525銷量(雙)12511731該店決定本周進貨時,多進一些尺碼為23.5厘米的鞋,影響鞋店決策的統(tǒng)計量是___________.三、解答題(共78分)19.(8分)已知在平面直角坐標中,點A(m,n)在第一象限內(nèi),AB⊥OA且AB=OA,反比例函數(shù)y=的圖象經(jīng)過點A,(1)當點B的坐標為(4,0)時(如圖1),求這個反比例函數(shù)的解析式;(2)當點B在反比例函數(shù)y=的圖象上,且在點A的右側(cè)時(如圖2),用含字母m,n的代數(shù)式表示點B的坐標;(3)在第(2)小題的條件下,求的值.20.(8分)如圖,AB為⊙O的弦,若OA⊥OD,AB、OD相交于點C,且CD=BD.(1)判定BD與⊙O的位置關系,并證明你的結(jié)論;(2)當OA=3,OC=1時,求線段BD的長.21.(8分)如圖,四邊形內(nèi)接于,是的直徑,點在的延長線上,延長交的延長線于點,點是的中點,.(1)求證:是的切線;(2)求證:是等腰三角形;(3)若,,求的值及的長.22.(10分)為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調(diào)查,并將所得數(shù)據(jù)繪制成如圖所示的兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:(1)本次抽樣調(diào)查學生的人數(shù)為.(2)補全兩個統(tǒng)計圖,并求出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù).(3)若該校共有840名學生,請根據(jù)抽樣調(diào)查結(jié)果估計獲得三等獎的人數(shù).23.(10分)如圖所示,學校準備在教學樓后面搭建一簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為),另外三邊利用學校現(xiàn)有總長的鐵欄圍成,留出2米長門供學生進出.若圍成的面積為,試求出自行車車棚的長和寬.24.(10分)如圖,在中,是上的高,.(1)求證:;(2)若,求的長.25.(12分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.26.我校數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長).直線MN垂直于地面,垂足為點P,在地面A處測得點M的仰角為60°,點N的仰角為45°,在B處測得點M的仰角為30°,AB=5米.且A、B、P三點在一直線上,請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(結(jié)果保留根號)
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)拋物線的平移規(guī)律“上加下減,左加右減”求解即可.【詳解】解:將拋物線向左平移2個單位后所得到的拋物線為:.故選D.【點睛】本題考查了拋物線的平移,屬于基礎知識,熟知拋物線的平移規(guī)律是解題的關鍵.2、D【解析】根據(jù)二次函數(shù)的對稱軸公式計算即可,其中a為二次項系數(shù),b為一次項系數(shù).【詳解】由二次函數(shù)的對稱軸公式得:故選:D.【點睛】本題考查了二次函數(shù)的對稱軸公式,熟記公式是解題關鍵.3、C【分析】把每個點的坐標代入函數(shù)解析式,從而可得答案.【詳解】解:當時,故A錯誤;當時,故B錯誤;當時,故C正確;當時,故D錯誤;故選C.【點睛】本題考查的是反比例函數(shù)圖像上點的坐標特點,掌握以上知識是解題的關鍵.4、B【分析】作CD⊥AB于點D.根據(jù)三角函數(shù)求CD的長,與圓的半徑比較,作出判斷.【詳解】解:作CD⊥AB于點D.
∵∠B=30°,BC=4cm,∴即CD等于圓的半徑.
∵CD⊥AB,
∴AB與⊙C相切.
故選:B.5、D【分析】根據(jù)二次函數(shù)的性質(zhì)對A、B進行判斷;根據(jù)二次函數(shù)圖象上點的坐標特征對C進行判斷;利用拋物線與軸交點坐標對D進行判斷.【詳解】A、a=1>0,則拋物線的開口向上,所以A選項錯誤;B、拋物線的對稱軸為直線x=1,所以B選項錯誤;C、當x=1時,有最小值為,所以C選項錯誤;D、當x=0時,y=-3,故拋物線與軸的交點為,所以D選項正確.故選:D.【點睛】本題考查了二次函數(shù)的性質(zhì),主要涉及開口方向,對稱軸,與y軸的交點坐標,最值問題,熟記二次函數(shù)的性質(zhì)是解題的關鍵.6、D【分析】代入,求得一元二次方程需滿足的條件.【詳解】由題意得,一元二次方程存在一個根代入到中解得故答案為:D.【點睛】本題考查了一元二次方程的解法,掌握解一元二次方程的方法是解題的關鍵.7、C【分析】根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標,根據(jù)偶次方的非負性判斷.【詳解】拋物線y=3(x+2)2﹣(m2+1)的的頂點坐標為(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴拋物線的頂點在第三象限,故選:C.【點睛】本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點坐標的確定方法、偶次方的非負性是解題的關鍵.8、B【分析】設扇形的半徑為r.利用弧長公式構(gòu)建方程求出r,再利用扇形的面積公式計算即可.【詳解】解:設扇形的半徑為r.由題意:=6π,∴r=9,∴S扇形==27π,故選B.【點睛】本題考查扇形的弧長公式,面積公式等知識,解題的關鍵是學會構(gòu)建方程解決問題,屬于中考常考題型.9、C【分析】分別根據(jù)平方根、等式性質(zhì)、三角形角平分線、線段垂直平分線性質(zhì)進行分析即可.【詳解】①64的平方根是,正確,是真命題;②,則不一定,可能;故錯誤;③根據(jù)角平分線性質(zhì),三角形三條內(nèi)角平分線交于一點,此點到三角形三邊的距離相等;是真命題;④根據(jù)三角形外心定義,三角形三邊的垂直平分線交于一點,是真命題;故選:C【點睛】考核知識點:命題的真假.理解平方根、等式性質(zhì)、三角形角平分線、線段垂直平分線性質(zhì)是關鍵.10、C【解析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項錯誤;B、原式=,所以B選項錯誤;C、原式=2,所以C選項正確;D、原式=6,所以D選項錯誤.故選C.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.11、A【詳解】解:的直徑為10,半徑為5,當時,最小,根據(jù)勾股定理可得,與重合時,最大,此時,所以線段的的長的取值范圍為,故選A.【點睛】本題考查垂徑定理,掌握定理內(nèi)容正確計算是本題的解題關鍵.12、B【分析】根據(jù)矩形的性質(zhì)得對角線相等且互相平分,再結(jié)合三角函數(shù)的定義,逐個計算即可判斷.【詳解】解:∵四邊形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A選項正確;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B選項錯誤;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C選項正確;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D選項正確.故選:B.【點睛】本題考查矩形的性質(zhì)及三角函數(shù)的定義,掌握三角函數(shù)的定義是解答此題的關鍵.二、填空題(每題4分,共24分)13、1.【分析】根據(jù)題目中的函數(shù)解析式可得到點P的坐標,然后設出點M、點N的坐標,然后計算即可解答本題.【詳解】解:∵二次函數(shù)y=1x1﹣4x+4=1(x﹣1)1+1,∴點P的坐標為(1,1),設點M的坐標為(a,1),則點N的坐標為(a,1a1﹣4a+4),∴===1,故答案為:1.【點睛】本題考查了二次函數(shù)與幾何的問題,解題的關鍵是求出點P左邊,設出點M、點N的坐標,表達出.14、1【分析】先將所求式子化成,再根據(jù)一元二次方程的根的定義得出一個a、b的等式,然后將其代入求解即可得.【詳解】由題意,將代入方程得:整理得:,即將代入得:故答案為:1.【點睛】本題考查了一元二次方程的根的定義、代數(shù)式的化簡求值,利用一元二次方程的根的定義得出是解題關鍵.15、1【分析】利用拋物線與x軸的交點問題得到m2﹣m﹣1=0,則m2﹣m=1,然后利用整體代入的方法計算m2﹣m+5的值.【詳解】∵拋物線y=x2﹣x﹣1與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)(是常數(shù),)與軸的交點坐標問題轉(zhuǎn)化為解關于的一元二次方程.16、【詳解】解:連接BE∵⊙的半徑,AB=2∴且,若設⊙的半徑為,則.在△ACO中,根據(jù)勾股定理有,即,解得:.∴.∵是⊙的直徑,∴.故答案為:【點睛】在與圓的有關的線段的計算中,一定要注意各種情況下構(gòu)成的直角三角形,有了直角三角形就有可能用勾股定理、三角函數(shù)等知識點進行相關計算.本題抓住由半徑、弦心距、半弦構(gòu)成的直角三角形和半圓上所含的直角三角形,三次利用勾股定理并借助方程思想解決問題.17、2【分析】根據(jù)題意可知,本題考查相似三角形性質(zhì),根據(jù)中心投影的特點和規(guī)律以及相似三角形性質(zhì),運用相似三角形對應邊成比例進行求解.【詳解】解:根據(jù)題意可知當小穎在BG處時,∴,即∴AP=6當小穎在DH處時,∴,即∴∴DE=2故答案為:2【點睛】本題考查了中心投影的特點和規(guī)律以及相似三角形性質(zhì)的運用,解題關鍵是運用相似三角形對應邊相等.18、眾數(shù)【解析】平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計量;方差、標準差是描述一組數(shù)據(jù)離散程度的統(tǒng)計量.銷量大的尺碼就是這組數(shù)據(jù)的眾數(shù).【詳解】由于眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),故應最關心這組數(shù)據(jù)中的眾數(shù).故答案為眾數(shù).【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.熟練掌握均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解答本題的關鍵.三、解答題(共78分)19、(1)y=;(2)B(m+n,n﹣m);(3)【分析】(1)根據(jù)等腰直角三角形性質(zhì),直角三角形斜邊中線定理,三線合一,得到點坐標,代入解析式即可得到.(2)過點作平行于軸的直線,過點作垂直于軸的直線交于點,交軸于點,構(gòu)造一線三等角全等,得到,,所以(3)把點和點的坐標代入反比例函數(shù)解析式得到關于、的等式,兩邊除以,換元法解得的值是【詳解】解:(1)過作,交軸于點,,,為等腰直角三角形,,,將,代入反比例解析式得:,即,則反比例解析式為;(2)過作軸,過作,,,,,在和中,,,,,,,則;(3)由與都在反比例圖象上,得到,整理得:,即,這里,,,△,,在第一象限,,,則.【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:全等三角形的判定與性質(zhì),坐標與圖形性質(zhì),等腰直角三角形的性質(zhì),以及一元二次方程的解法,熟練掌握反比例函數(shù)的性質(zhì)是解本題的關鍵.20、(1)見解析;(2)1【分析】(1)連接OB,由BD=CD,利用等邊對等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC為直角三角形,得到兩銳角互余,等量代換得到OB垂直于BD,即可得證;(2)設BD=x,則OD=x+1,在RT△OBD中,根據(jù)勾股定理得出32+x2=(x+1)2,通過解方程即可求得.【詳解】解:(1)證明:連接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,則BD為圓O的切線;(2)解:設BD=x,則OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴線段BD的長是1.21、(1)見解析;(2)見解析;(3),【分析】(1)根據(jù)圓的切線的定義來證明,證∠OCD=90°即可;(2)根據(jù)全等三角形的性質(zhì)和四邊形的內(nèi)接圓的外角性質(zhì)來證;(3)根據(jù)已知條件先證△CDB∽△ADC,由相似三角形的對應邊成比例,求CB的值,然后求求的值;連結(jié)BE,在Rt△FEB和Rt△AEB中,利用勾股定理來求EF即可.【詳解】解:(1)如圖1,連結(jié),是的直徑,,又點是的中點,.,又是的切線圖1(2)四邊形內(nèi)接于,.,即是等腰三角形(3)如圖2,連結(jié),設,,在中,,由(1)可知,又,在中,,,是的直徑,,即解得圖2【點睛】本題考查了圓的切線、相似三角形的性質(zhì)、勾股定理的應用,解本題關鍵是找對應的線段長.22、(1)40;(2)見解析,18°;(3)獲得三等獎的有210人.【分析】(1)根據(jù)B的人數(shù)和所占的百分比可以求得本次抽樣調(diào)查學生人數(shù);(2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)和(1)中的結(jié)果可以將統(tǒng)計圖中所缺的數(shù)據(jù)補充完整并計算出扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù);(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出獲得三等獎的人數(shù).【詳解】解:(1)本次抽樣調(diào)查學生的人數(shù)為:8÷20%=40,故答案為:40;(2)A所占的百分比為:×100%=5%,D所占的百分比為:×100%=50%,C所占的百分比為:1﹣5%﹣20%﹣50%=25%,獲得三等獎的人數(shù)為:40×25%=10,補全的統(tǒng)計圖如圖所示,扇形統(tǒng)計圖中A所對應扇形圓心角的度數(shù)是360°×5%=18°;(3)840×25%=210(人),答:獲得三等獎的有210人.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結(jié)合的思想解答.23、若圍成的面積為,自行車車棚的長和寬分別為10米,18米.【分析】設自行車車棚的寬AB為x米,則長為(38-2x)米,根據(jù)矩形的面積公式,即可列方程求解即可.【詳解】解:現(xiàn)有總長的鐵欄圍成,需留出2米長門∴設,則;根據(jù)題意列方程,解得,;當,(米),當,(米),而墻長,不合題意舍去,答:若圍成的面積為,自行車車棚的長和寬分別為10米,18米.【點睛】本題考查的是一元二次方程的應用,結(jié)合圖形求解.找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.24、(1)見解析;(2).【分析】(1)由于tanB=cos∠DAC,根據(jù)正切和余弦的概念可證明AC=BD;
(2)根據(jù),AD=24,可求出AC的長,再利用勾股定理可求出CD的長,再根據(jù)BC=CD+BD=CD+AC可得出結(jié)果.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 打合作種植合同范例
- 戰(zhàn)略顧問合同范例
- 商用物業(yè)租賃合同范例
- 果園管理勞動合同范例
- 學生電腦出售合同范例
- 專業(yè)雕塑合同范例
- 教育培訓公司合同范例
- 孵化場合同范例
- 棗陽合同范例處理
- 出租小型家具合同范例
- 民警考察材料范文(通用4篇)
- 高速公路項目工程項目建設管理辦法
- 鋼結(jié)構(gòu)起重機行車軌道安裝工程檢驗批質(zhì)量驗收記錄表
- 你演我猜-題庫1
- 華醫(yī)網(wǎng)繼續(xù)教育公共課必修選修課抗菌藥物臨床應用指導原則考試或補考題庫及答案word檢索版
- 國際貿(mào)易實務教學完整(新)PPT
- 《商務溝通與談判》
- 2023版中國近現(xiàn)代史綱要課件第一專題歷史是最好的教科書PPT
- 特別的人歌詞
- 耳尖放血課件完整版
- 【護士資格考試】江蘇民政康復醫(yī)院模擬檢測練習題
評論
0/150
提交評論