版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省茂名市五大聯(lián)盟學校2024屆數(shù)學高三上期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.402.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.4.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.5.設復數(shù)滿足,則在復平面內(nèi)的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.7.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.48.臺球是一項國際上廣泛流行的高雅室內(nèi)體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國地區(qū)的叫法)控制撞球點、球的旋轉(zhuǎn)等控制母球走位是擊球的一項重要技術,一次臺球技術表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F(xiàn)處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F(xiàn)處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm9.一個空間幾何體的正視圖是長為4,寬為的長方形,側(cè)視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.復數(shù)(i為虛數(shù)單位)的共軛復數(shù)是A.1+i B.1?i C.?1+i D.?1?i11.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.12.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.99二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.14.集合,,則_____.15.某校高三年級共有名學生參加了數(shù)學測驗(滿分分),已知這名學生的數(shù)學成績均不低于分,將這名學生的數(shù)學成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學生中數(shù)學成績在分以下的人數(shù)為;③這名學生數(shù)學成績的中位數(shù)約為;④這名學生數(shù)學成績的平均數(shù)為.16.(5分)已知為實數(shù),向量,,且,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.18.(12分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.20.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.21.(12分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.22.(10分)設函數(shù),.(1)解不等式;(2)若對任意的實數(shù)恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.2、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.3、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.4、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.5、C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數(shù)的化簡和對應象限,意在考查學生的計算能力.6、B【解析】
根據(jù)已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數(shù)關系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.7、A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.8、D【解析】
過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據(jù),列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.9、B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點睛】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.10、B【解析】分析:化簡已知復數(shù)z,由共軛復數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復數(shù)為1﹣i.故選B.點睛:本題考查復數(shù)的代數(shù)形式的運算,涉及共軛復數(shù),屬基礎題.11、B【解析】
可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題12、B【解析】
由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(1,)【解析】
在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,把已知條件進行等價轉(zhuǎn)化是求解的關鍵,側(cè)重考查數(shù)學抽象的核心素養(yǎng).14、【解析】
分析出集合A為奇數(shù)構成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.15、②③【解析】
由頻率分布直方圖可知,解得,故①不正確;這名學生中數(shù)學成績在分以下的人數(shù)為,故②正確;設這名學生數(shù)學成績的中位數(shù)為,則,解得,故③正確;④這名學生數(shù)學成績的平均數(shù)為,故④不正確.綜上,說法正確的序號是②③.16、5【解析】
由,,且,得,解得,則,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)?!窘馕觥?/p>
(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數(shù)的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18、(1);(2).【解析】
(1)首先對函數(shù)求導,根據(jù)函數(shù)存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數(shù),由,得,故實數(shù)a的取值范圍是.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的極值點和單調(diào)性,利用函數(shù)單調(diào)性證明不等式,屬于難題.19、(1)見解析;(2)見解析【解析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.20、(1);(2)【解析】
(1)利用零點分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當且僅當時取“=”).所以的最小值為.【點睛】本題考查絕對值不等式的解法以及利用柯西不等式求最值.解絕對值不等式的基本方法有零點分段討論法、圖象法、平方法等,利用零點分段討論法時注意分類點的合理選擇,利用平方去掉絕對值符號時注意代數(shù)式的正負,而利用圖象法求解時注意圖象的正確刻畫.利用柯西不等式求最值時注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.21、(Ⅰ);(Ⅱ)【解析】
(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三體讀書筆記
- 簡歷的自我評價(合集15篇)
- 售后客服工作總結(jié)合集15篇
- xxx生態(tài)養(yǎng)豬場建設產(chǎn)業(yè)化項目商業(yè)計劃書
- 南京某煤氣站鋼結(jié)構氣柜施工組織設計
- 房地產(chǎn)銷售個人季度工作總結(jié)(合集六篇)
- 七年級人教版復習提綱
- 《職場溝通》電子教案 項目十 商務宴請溝通(4課時)
- 2025年硅力敏傳感器項目發(fā)展計劃
- 門面房出租合同范文
- 雙塊式無砟軌道道床板裂紋成因分析應對措施
- FZ∕T 62044-2021 抗菌清潔巾
- 國家電網(wǎng)有限公司十八項電網(wǎng)重大反事故措施(修訂版)
- 凈水廠課程設計
- 全級老年大學星級學校達標評價細則
- 模具維護保養(yǎng)PPT課件
- 《新媒體文案寫作》試卷4
- 【模板】OTS認可表格
- 2021國家開放大學電大本科《流行病學》期末試題及答案
- 中國銀行_境外匯款申請表模板(練手)
- 中班數(shù)學活動《圖圖家請客》教案
評論
0/150
提交評論