版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆南充市重點中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向2.已知是公差不為零的等差數(shù)列,其前項和為,若成等比數(shù)列,則A. B.C. D.3.已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F(xiàn)分別是PA,AB的中點,∠CEF=90°.則球O的體積為()A. B. C. D.4.已知數(shù)列的前項和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確5.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含6.某學(xué)校為了解1000名新生的身體素質(zhì),將這些學(xué)生編號1,2,……,1000,從這些新生中用系統(tǒng)抽樣方法等距抽取50名學(xué)生進(jìn)行體質(zhì)測驗.若66號學(xué)生被抽到,則下面4名學(xué)生中被抽到的是()A.16 B.226 C.616 D.8567.關(guān)于的不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.8.以下給出了4個命題:(1)兩個長度相等的向量一定相等;(2)相等的向量起點必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個數(shù)共有()A.3個 B.2個 C.1個 D.0個9.以下有四個說法:①若、為互斥事件,則;②在中,,則;③和的最大公約數(shù)是;④周長為的扇形,其面積的最大值為;其中說法正確的個數(shù)是()A. B.C. D.10.在區(qū)間內(nèi)任取一個實數(shù),則此數(shù)大于2的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在上,滿足的的取值范圍是______.12.記,則函數(shù)的最小值為__________.13.把二進(jìn)制數(shù)化為十進(jìn)制數(shù)是:______.14.設(shè),其中,則的值為________.15.若實數(shù)滿足,,則__________.16.設(shè)奇函數(shù)的定義域為R,且對任意實數(shù)滿足,若當(dāng)∈[0,1]時,,則____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角A,B,C的對邊分別為a,b,c,,且.(1)求A;(2)求面積的最大值.18.如果一個數(shù)列從第2項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“阿當(dāng)數(shù)列”.(1)若數(shù)列為“阿當(dāng)數(shù)列”,且,,,求實數(shù)的取值范圍;(2)是否存在首項為1的等差數(shù)列為“阿當(dāng)數(shù)列”,且其前項和滿足?若存在,請求出的通項公式;若不存在,請說明理由.(3)已知等比數(shù)列的每一項均為正整數(shù),且為“阿當(dāng)數(shù)列”,,,當(dāng)數(shù)列不是“阿當(dāng)數(shù)列”時,試判斷數(shù)列是否為“阿當(dāng)數(shù)列”,并說明理由.19.已知公差的等差數(shù)列的前項和為,且滿足,.(1)求數(shù)列的通項公式;(2)求證:是數(shù)列中的項;(3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,,為遞增的等比數(shù)列,求的值所構(gòu)成的集合.20.已知點,圓.(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值.21.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求方程的解構(gòu)成的集合.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【題目詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【題目點撥】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學(xué)運算能力.2、B【解題分析】∵等差數(shù)列,,,成等比數(shù)列,∴,∴,∴,,故選B.考點:1.等差數(shù)列的通項公式及其前項和;2.等比數(shù)列的概念3、D【解題分析】
計算可知三棱錐P-ABC的三條側(cè)棱互相垂直,可得球O是以PA為棱的正方體的外接球,球的直徑,即可求出球O的體積.【題目詳解】在△PAC中,設(shè),,,,因為點E,F(xiàn)分別是PA,AB的中點,所以,在△PAC中,,在△EAC中,,整理得,因為△ABC是邊長為的正三角形,所以,又因為∠CEF=90°,所以,所以,所以.又因為△ABC是邊長為的正三角形,所以PA,PB,PC兩兩垂直,則球O是以PA為棱的正方體的外接球,則球的直徑,所以外接球O的體積為.故選D.【題目點撥】本題考查了三棱錐的外接球,考查了學(xué)生的空間想象能力,屬于中檔題.4、D【解題分析】
利用即可求得:,當(dāng)時,或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【題目詳解】因為,當(dāng)時,,解得,當(dāng)時,,整理有,,所以或若時,滿足,時,滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【題目點撥】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.5、B【解題分析】
首先把兩個圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,求出其圓心坐標(biāo)和半徑,再比較圓心距與半徑的關(guān)系即可.【題目詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關(guān)系是相離.故選:B【題目點撥】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡單題.6、B【解題分析】
抽樣間隔為,由第三組中的第6個數(shù)被抽取到,結(jié)合226是第12組中的第6個數(shù),從而可得結(jié)果.【題目詳解】從這些新生中用系統(tǒng)抽樣方法等距抽取50名學(xué)生進(jìn)行體質(zhì)測驗,抽樣間隔為,號學(xué)生被抽到,第四組中的第6個數(shù)被抽取到,226是第12組中的第6個數(shù),被抽到,故選:B.【題目點撥】本題主要考查系統(tǒng)抽樣的性質(zhì),確定抽樣間隔是解題的關(guān)鍵,屬于基礎(chǔ)題.7、D【解題分析】
特值,利用排除法求解即可.【題目詳解】因為當(dāng)時,滿足題意,所以可排除選項B、C、A,故選D【題目點撥】不等式恒成立問題有兩個思路:求最值,說明恒成立參變分離,再求最值。8、D【解題分析】
利用向量的概念性質(zhì)和向量的數(shù)量積對每一個命題逐一分析判斷得解.【題目詳解】(1)兩個長度相等的向量不一定相等,因為它們可能方向不同,所以該命題是錯誤的;(2)相等的向量起點不一定相同,只要它們方向相同長度相等就是相等向量,所以該命題是錯誤的;(3)若,且,則是錯誤的,舉一個反例,如,不一定相等,所以該命題是錯誤的;(4)若向量的模小于的模,則,是錯誤的,因為向量不能比較大小,因為向量既有大小又有方向,故該命題不正確.故選:D【題目點撥】本題主要考查向量的概念和數(shù)量積的計算,意在考查學(xué)生對這些知識的理解掌握水平.9、C【解題分析】
設(shè)、為對立事件可得出命題①的正誤;利用大邊對大角定理和余弦函數(shù)在上的單調(diào)性可判斷出命題②的正誤;列出和各自的約數(shù),可找出兩個數(shù)的最大公約數(shù),從而可判斷出命題③的正誤;設(shè)扇形的半徑為,再利用基本不等式可得出扇形面積的最大值,從而判斷出命題④的正誤.【題目詳解】對于命題①,若、為對立事件,則、互斥,則,命題①錯誤;對于命題②,由大邊對大角定理知,,且,函數(shù)在上單調(diào)遞減,所以,,命題②正確;對于命題③,的約數(shù)有、、、、、,的約數(shù)有、、、、、、、,則和的最大公約數(shù)是,命題③正確;對于命題④,設(shè)扇形的半徑為,則扇形的弧長為,扇形的面積為,由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,扇形面積的最大值為,命題④錯誤.故選C.【題目點撥】本題考查命題真假的判斷,涉及互斥事件的概率、三角形邊角關(guān)系、公約數(shù)以及扇形面積的最值,判斷時要結(jié)合這些知識點的基本概念來理解,考查推理能力,屬于中等題.10、D【解題分析】
根據(jù)幾何概型長度型直接求解即可.【題目詳解】根據(jù)幾何概型可知,所求概率為:本題正確選項:【題目點撥】本題考查幾何概型概率問題的求解,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由,結(jié)合三角函數(shù)線,即可求解,得到答案.【題目詳解】如圖所示,因為,所以滿足的的取值范圍為.【題目點撥】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、4【解題分析】
利用求解.【題目詳解】,當(dāng)時,等號成立.故答案為:4【題目點撥】本題主要考查絕對值不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.13、51【解題分析】110011(2)14、【解題分析】
由兩角差的正弦公式以及誘導(dǎo)公式,即可求出的值.【題目詳解】,所以,因為,故.【題目點撥】本題主要考查兩角差的正弦公式的逆用以及誘導(dǎo)公式的應(yīng)用.15、【解題分析】
由反正弦函數(shù)的定義求解.【題目詳解】∵,∴,,∴,∴.故答案為:.【題目點撥】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.16、【解題分析】
根據(jù)得到周期,再利用周期以及奇函數(shù)將自變量轉(zhuǎn)變到給定區(qū)間計算函數(shù)值.【題目詳解】因為,所以,所以,又因為,所以,則,故,又因為是奇函數(shù),所以,則.【題目點撥】(1)形如的函數(shù)是周期函數(shù),周期;(2)若要根據(jù)奇偶性求解分段函數(shù)的表達(dá)式,記住一個原則:“用未知表示已知”,也就是將自變量變形,利用已知范圍和解析式求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)由題目條件a=1,可以將(1+b)(sinA-sinB)=(c-b)sinC中的1換成a,達(dá)到齊次化的目的,再用正余弦定理解決;(2)已知∠A,要求△ABC的面積,可用公式,因此把問題轉(zhuǎn)化為求bc的最大值.【題目詳解】(1)因為(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因為b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,當(dāng)且僅當(dāng)b=c=1時,取等號.∴面積的最大值.【題目點撥】本題考查正弦定理解三角形及面積問題,解決三角形面積最值問題常常結(jié)合均值不等式求解,屬于中等題.18、(1);(2)不存在,理由見詳解;(3)見詳解.【解題分析】
(1)根據(jù)題意,得到,求解即可得出結(jié)果;(2)先假設(shè)存在等差數(shù)列為“阿當(dāng)數(shù)列”,設(shè)公差為,則,根據(jù)等差數(shù)列求和公式,結(jié)合題中條件,得到,即對任意都成立,判斷出,推出矛盾,即可得出結(jié)果;(3)設(shè)等比數(shù)列的公比為,根據(jù)為“阿當(dāng)數(shù)列”,推出在數(shù)列中,為最小項;在數(shù)列中,為最小項;得到,,再由數(shù)列每一項均為正整數(shù),得到,或,;分別討論,和,兩種情況,結(jié)合數(shù)列的增減性,即可得出結(jié)果.【題目詳解】(1)由題意可得:,,即,解得或;所以實數(shù)的取值范圍是;(2)假設(shè)存在等差數(shù)列為“阿當(dāng)數(shù)列”,設(shè)公差為,則,由可得:,又,所以對任意都成立,即對任意都成立,因為,且,所以,與矛盾,因此,不存在等差數(shù)列為“阿當(dāng)數(shù)列”;(3)設(shè)等比數(shù)列的公比為,則,且每一項均為正整數(shù),因為為“阿當(dāng)數(shù)列”,所以,所以,;因為,即在數(shù)列中,為最小項;同理,在數(shù)列中,為最小項;由為“阿當(dāng)數(shù)列”,只需,即,又因為數(shù)列不是“阿當(dāng)數(shù)列”,所以,即,由數(shù)列每一項均為正整數(shù),可得:,所以,或,;當(dāng),時,,則,令,則,所以,即數(shù)列為遞增數(shù)列,所以,因為,所以對任意,都有,即數(shù)列是“阿當(dāng)數(shù)列”;當(dāng),時,,則,顯然數(shù)列是遞減數(shù)列,,故數(shù)列不是“阿當(dāng)數(shù)列”;綜上,當(dāng)時,數(shù)列是“阿當(dāng)數(shù)列”;當(dāng)時,數(shù)列不是“阿當(dāng)數(shù)列”.【題目點撥】本題主要考查數(shù)列的綜合,熟記等差數(shù)列與等比數(shù)列的通項公式與求和公式,以及數(shù)列的性質(zhì)即可,屬于??碱}型.19、(1);(2)證明見解析;(3)見解析【解題分析】
(1)根據(jù)等差數(shù)列性質(zhì),結(jié)合求得等再求的通項公式.
(2)先求出,再證明滿足的通項公式.
(3)由數(shù)列,,為遞增的等比數(shù)列可得,從而根據(jù)的通項公式求的值所構(gòu)成的集合.【題目詳解】(1)因為為等差數(shù)列,故,故或,又公差,所以,故,故.
(2)由可得,故,若是數(shù)列中的項,則即,即,故是數(shù)列中的項;(3)由數(shù)列,,為遞增的等比數(shù)列,則即.由題意存在正整數(shù)使得等式成立,因為,故能被5整除,設(shè),則,又為整數(shù),故為整數(shù)設(shè),即,故,解得,又,故,不妨設(shè),則.即又當(dāng)時,由得滿足條件.綜上所述,.【題目點撥】(1)本題考查等差數(shù)列性質(zhì):若是等差數(shù)列,且,則(2)證明數(shù)列中是否滿足某項或者存在正整數(shù)使得某三項為等比數(shù)列時,均先根據(jù)條件列出對應(yīng)的表達(dá)式,再利用正整數(shù)的性質(zhì)進(jìn)行判斷,有一定的難度.20、(1)或.(2)【解題分析】
(1)分切線的斜率不存在與存在兩種情況分析.當(dāng)斜率存在時設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【題目詳解】解:(1)由題意知圓心的坐標(biāo)為,半徑,當(dāng)過點M的直線的斜率不存在時,方程為.由圓心到直線的距離知,此時,直線與圓相切.當(dāng)過點M的直線的斜率存在時,設(shè)方程為,即.由題意知,解得,∴方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南蝴蝶泉導(dǎo)游詞
- DB12T 481-2013 洗染業(yè)皮具護(hù)理服務(wù)規(guī)范
- 七夕節(jié)促銷活動策劃
- 高等數(shù)學(xué)教程 上冊 第4版 測試題及答案 高數(shù)2-測試一 - 答案
- 影響貨幣供給量的因素有哪些
- 陽江職業(yè)技術(shù)學(xué)院附屬實驗學(xué)校八年級上學(xué)期語文第一次月考試卷
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案
- 膠管采購合同(2篇)
- 南京工業(yè)大學(xué)浦江學(xué)院《商務(wù)談判》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇盱眙經(jīng)濟開發(fā)區(qū)圣山路及新海大道道路改造工程施工組織設(shè)計
- 親子鑒定報告樣本
- 心理健康的重要性課件
- 社區(qū)管理與服務(wù)創(chuàng)新課件
- 2024年度醫(yī)院皮膚科中醫(yī)帶教計劃課件
- 海鮮自助策劃方案
- 你演我猜規(guī)則介紹+題目
- 社會主義新農(nóng)村建設(shè)
- 消防專業(yè)職業(yè)生涯規(guī)劃
- 執(zhí)照-航空法規(guī)
- 急性化膿性膽囊炎查房課件
- 中國信通院-數(shù)字化供應(yīng)鏈標(biāo)桿案例匯編(2023)-2023.11
評論
0/150
提交評論