2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題含解析_第1頁
2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題含解析_第2頁
2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題含解析_第3頁
2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題含解析_第4頁
2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省杭州地區(qū)七校高一數(shù)學(xué)第二學(xué)期期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某市家庭煤氣的使用量和煤氣費(元)滿足關(guān)系,已知某家庭今年前三個月的煤氣費如下表:月份用氣量煤氣費一月份元二月份元三月份元若四月份該家庭使用了的煤氣,則其煤氣費為()元A. B. C. D.2.已知各項均為正數(shù)的等比數(shù)列,若,則的值為()A.-4 B.4 C. D.03.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于若第一個單音的頻率為,則第八個單音的頻率為()A. B. C. D.4.過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為()A. B. C. D.5.直線與直線平行,則()A. B.或 C. D.或6.已知圓和圓只有一條公切線,若,且,則的最小值為()A.2 B.4 C.8 D.97.一個盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個,從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.758.對一切實數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.9.已知函數(shù),若關(guān)于的不等式的解集為,則A. B.C. D.10.設(shè)正項等比數(shù)列的前項和為,若,,則公比()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知l,m是平面外的兩條不同直線.給出下列三個論斷:①l⊥m;②m∥;③l⊥.以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:__________.12.已知,,則________.13.在△ABC中,a、b、c分別為角A、B、C的對邊,若b·cosC=c·cosB,且cosA=,則cosB的值為_____.14.某縣現(xiàn)有高中數(shù)學(xué)教師500人,統(tǒng)計這500人的學(xué)歷情況,得到如下餅狀圖,該縣今年計劃招聘高中數(shù)學(xué)新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學(xué)專科學(xué)歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計劃招聘的研究生人數(shù)為_______.15.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分圖象如圖所示,則f()=________.16.已知不等式的解集為,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的最大值與最小值.18.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).19.如圖,在中,點在邊上,,,.(1)求邊的長;(2)若的面積是,求的值.20.(1分)設(shè)數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=1.(1)求數(shù)列{an}的通項公式;(2)設(shè)數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.21.東莞市攝影協(xié)會準備在2019年10月舉辦主題為“慶祖國70華誕——我們都是追夢人”攝影圖片展.通過平常人的鏡頭記錄國強民富的幸福生活,向祖國母親的生日獻禮,攝影協(xié)會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如圖:(1)求頻率分布直方圖中的值,并根據(jù)頻率分布直方圖,求這100位攝影者年齡的樣本平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);(2)為了展示不同年齡作者眼中的祖國形象,攝影協(xié)會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應(yīng)作者參加“講述照片背后的故事”座談會.①在答題卡上的統(tǒng)計表中填出每組相應(yīng)抽取的人數(shù):年齡人數(shù)②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人至少有一人的年齡在的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由題意得:C=4,將(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20時:f(20)=4+(20﹣5)=11.5.故選:C.點睛:這是函數(shù)的實際應(yīng)用題型,根據(jù)題目中的條件和已知點得到分段函數(shù)的未知量的值,首先得到函數(shù)表達式,再根據(jù)題意讓求自變量為20時的函數(shù)值,求出即可。實際應(yīng)用題型,一般是先根據(jù)題意構(gòu)建模型,列出表達式,根據(jù)條件求解問題即可。2、B【解題分析】

根據(jù)等比中項可得,再根據(jù),即可求出結(jié)果.【題目詳解】由等比中項可知,,又,所以.故選:B.【題目點撥】本題主要考查了等比中項的性質(zhì),屬于基礎(chǔ)題.3、B【解題分析】

根據(jù)等比數(shù)列通項公式,求得第八個單音的頻率.【題目詳解】根據(jù)等比數(shù)列通項公式可知第八個單音的頻率為.故選:B.【題目點撥】本小題主要考查等比數(shù)列的通項公式,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.4、C【解題分析】

設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當點C在坐標原點時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【題目詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當點C在坐標原點時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【題目點撥】本題考查雙曲線的簡單性質(zhì),分析得到當點C在坐標原點時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.5、B【解題分析】

兩直線平行,斜率相等;按,和三類求解.【題目詳解】當即時,兩直線為,,兩直線不平行,不符合題意;當時,兩直線為,兩直線不平行,不符合題意;當即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【題目點撥】本題考查直線平行的斜率關(guān)系,注意斜率不存在和斜率為零的情況.6、D【解題分析】

由題意可得兩圓相內(nèi)切,根據(jù)兩圓的標準方程求出圓心和半徑,可得,再利用“1”的代換,使用基本不等式求得的最小值.【題目詳解】解:由題意可得兩圓相內(nèi)切,兩圓的標準方程分別為,,圓心分別為,,半徑分別為2和1,故有,,,當且僅當時,等號成立,的最小值為1.故選:.【題目點撥】本題考查兩圓的位置關(guān)系,兩圓相內(nèi)切的性質(zhì),圓的標準方程的特征,基本不等式的應(yīng)用,得到是解題的關(guān)鍵和難點.7、D【解題分析】

由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球為互斥事件,根據(jù)互斥事件的和即可求解.【題目詳解】因為從中摸出1個球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因為從盒子中摸出1個球為黑球或紅球為互斥事件,所以摸出黑球或紅球的概率,故選D.【題目點撥】本題主要考查了兩個互斥事件的和事件,其概率公式,屬于中檔題.8、A【解題分析】

時,恒成立.時,原不等式等價于.由的最小值是2,可得,即.選A.9、B【解題分析】

由題意可得,且,3為方程的兩根,運用韋達定理可得,,的關(guān)系,可得的解析式,計算,(1),(4),比較可得所求大小關(guān)系.【題目詳解】關(guān)于的不等式的解集為,可得,且,3為方程的兩根,可得,,即,,,,可得,(1),(4),可得(4)(1),故選.【題目點撥】本題主要考查二次函數(shù)的圖象和性質(zhì)、函數(shù)與方程的思想,以及韋達定理的運用。10、D【解題分析】

根據(jù)題意,求得,結(jié)合,即可求解,得到答案.【題目詳解】由題意,正項等比數(shù)列滿足,,即,,所以,又由,因為,所以.故選:D.【題目點撥】本題主要考查了的等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式,合理運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解題分析】

將所給論斷,分別作為條件、結(jié)論加以分析.【題目詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【題目點撥】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.12、【解題分析】

由二倍角求得α,則tanα可求.【題目詳解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,則,即.∴.故答案為:.【題目點撥】本題考查三角函數(shù)的恒等變換及化簡求值,考查公式的靈活應(yīng)用,屬于基礎(chǔ)題.13、【解題分析】

利用余弦定理表示出與,代入已知等式中,整理得到,再利用余弦定理表示出,將及的值代入用表示出,將表示出的與代入中計算,即可求出值.【題目詳解】由題意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,則,故答案為.【題目點撥】本題考查了解三角形的綜合應(yīng)用,高考中經(jīng)常將三角變換與解三角形知識綜合起來命題,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理實現(xiàn)邊角互化;以上特征都不明顯時,則要考慮兩個定理都有可能用到.14、50【解題分析】

先計算出招聘后高中數(shù)學(xué)教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計劃招聘的研究生人數(shù).【題目詳解】招聘后該縣高中數(shù)學(xué)專科學(xué)歷的教師比例下降到,則招聘后,該縣高中數(shù)學(xué)教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計劃招聘的研究生人數(shù)為.【題目點撥】本題主要考查學(xué)生的閱讀理解能力和分析能力,從題目中提煉關(guān)鍵字眼“比例保持不變”是解題的關(guān)鍵.15、3【解題分析】

根據(jù)圖象看出周期、特殊點的函數(shù)值,解出待定系數(shù)即可解得.【題目詳解】由圖可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【題目點撥】本題考查由圖象求正切函數(shù)的解析式,屬于中檔題。16、-7【解題分析】

結(jié)合一元二次不等式和一元二次方程的性質(zhì),列出方程組,求得的值,即可得到答案.【題目詳解】由不等式的解集為,可得,解得,所以.故答案為:.【題目點撥】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質(zhì),其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解題分析】

(1)利用三角恒等變換,化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;(2)利用正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間;(3)利用正弦函數(shù)的定義域和值域,求得當時,f(x)的最大值與最小值.【題目詳解】(1)∵函數(shù)f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期為=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的單調(diào)增區(qū)間為[kπ﹣,kπ+],k∈Z.(3)若,則2x﹣∈,當2x﹣=時,f(x)=2;當2x﹣=﹣時,f(x)=.【題目點撥】本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,正弦函數(shù)的定義域和值域,屬于中檔題.18、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解題分析】

(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【題目詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽?。喝耍诮M抽?。喝?,第組抽?。喝耍?)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡的平均數(shù)為:【題目點撥】本題考查頻率、頻數(shù)、眾數(shù)、平均數(shù)的求法,考查分層抽樣的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.19、(1)2;(2)【解題分析】

(1)設(shè),利用余弦定理列方程可得:,解方程即可(2)利用(1)中結(jié)果即可判斷為等邊三角形,即可求得中邊上的高為,再利用的面積是即可求得:,結(jié)合余弦定理可得:,再利用正弦定理可得:,問題得解【題目詳解】(1)在中,設(shè),則,由余弦定理得:即:解之得:,即邊的長為2.(2)由(1)得為等邊三角形,作于,則∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【題目點撥】本題主要考查了利用正、余弦定理解三角形,還考查了三角形面積公式的應(yīng)用及計算能力,屬于中檔題20、(1)an=2×【解題分析】試題分析:(1)設(shè)出等比數(shù)列{a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論