版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆甘肅省白銀市靖遠第一中學數(shù)學高一第二學期期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列不等式不成立的是()A. B. C. D.2.定義在上的函數(shù)若關于的方程(其中)有個不同的實根,,…,,則()A. B. C. D.3.已知不等式的解集為,則不等式的解集為()A. B.C. D.4.在中,角、、所對的邊分別為、、,且,,,則的面積為()A. B. C. D.5.已知直線,平面,且,下列條件中能推出的是()A. B. C. D.與相交6.設點是函數(shù)圖象士的任意一點,點滿足,則的最小值為()A. B. C. D.7.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.8.過點P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m間的距離為()A.4 B.2 C.85 D.129.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點A.向左平行移動個單位長度B.向右平行移動個單位長度C.向左平行移動個單位長度D.向右平行移動個單位長度10.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知關于實數(shù)x,y的不等式組構(gòu)成的平面區(qū)域為,若,使得恒成立,則實數(shù)m的最小值是______.12.已知呈線性相關的變量,之間的關系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.13.若函數(shù)的圖象與直線恰有兩個不同交點,則m的取值范圍是________.14.直線與的交點坐標為________.15.已知等比數(shù)列的前項和為,,則的值是__________.16.已知向量,,則的最大值為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列滿足,前項和.(1)求的通項公式(2)設等比數(shù)列滿足,,求的通項公式及的前項和.18.在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,且,.(1)求數(shù)列和的通項公式;(2)令,設數(shù)列的前項和為,求()的最大值與最小值.19.已知函數(shù).(1)求的值;(2)若,求的取值范圍.20.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.21.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
根據(jù)不等式的基本性質(zhì)、重要不等式、函數(shù)的單調(diào)性即可得出結(jié)論.【題目詳解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指數(shù)函數(shù)在上單調(diào)遞增,且,∴,故D成立;故選:B.【題目點撥】本題主要考查不等式的基本性質(zhì),作差法比較大小,屬于基礎題.2、C【解題分析】畫出函數(shù)的圖象,如圖,由圖可知函數(shù)的圖象關于對稱,解方程方程,得或,時有三個根,,時有兩個根,所以關于的方程共有五個根,,,故選C.【方法點睛】本題主要考查函數(shù)的圖象與性質(zhì)以及函數(shù)與方程思想、數(shù)形結(jié)合思想的應用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,.函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì).3、B【解題分析】
首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【題目詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【題目點撥】本題主要考查二次不等式的求法,同時考查了學生的計算能力,屬于簡單題.4、B【解題分析】
由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面積公式可求得的面積.【題目詳解】,,又,,由余弦定理可得,可得,所以,的面積為.故選:B.【題目點撥】本題考查三角形面積的計算,同時也考查了余弦定理解三角形,考查計算能力,屬于中等題.5、C【解題分析】
根據(jù)線面垂直的性質(zhì),逐項判斷即可得出結(jié)果.【題目詳解】A中,若,由,可得;故A不滿足題意;B中,若,由,可得;故B不滿足題意;C中,若,由,可得;故C正確;D中,若與相交,由,可得異面或平,故D不滿足題意.故選C【題目點撥】本題主要考查線面垂直的性質(zhì),熟記線面垂直的性質(zhì)定理即可,屬于常考題型.6、B【解題分析】
函數(shù)表示圓位于x軸下面的部分。利用點到直線的距離公式,求出最小值?!绢}目詳解】函數(shù)化簡得。圓心坐標,半徑為2.所以【題目點撥】本題考查點到直線的距離公式,屬于基礎題。7、B【解題分析】
試題分析:由題意得,,令,可得函數(shù)的圖象對稱軸方程為,取是軸右側(cè)且距離軸最近的對稱軸,因為將函數(shù)的圖象向左平移個長度單位后得到的圖象關于軸對稱,的最小值為,故選B.考點:兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì).【方法點晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質(zhì),將三角函數(shù)圖象向左平移個單位,所得圖象關于軸對稱,求的最小值,著重考查了三角函數(shù)的化簡、三角函數(shù)圖象的對稱性等知識的靈活應用,本題的解答中利用輔助角公式,化簡得到函數(shù),可取出函數(shù)的對稱軸,確定距離最近的點,即可得到結(jié)論.8、A【解題分析】設l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直線9、D【解題分析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向右平行移動個單位長度,故選D.【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個單位得的圖象,再把橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,另一種是把的圖象橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,再向左平移個單位得的圖象.10、D【解題分析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點與定點距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【題目詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標函數(shù),則目標函數(shù)表示平面區(qū)域內(nèi)的點與定點距離的平方,由圖像易知,點到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【題目點撥】本題主要考查簡單的線性規(guī)劃問題,只需分析清楚目標函數(shù)的幾何意義,即可結(jié)合可行域來求解,屬于??碱}型.12、【解題分析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應用;求線性回歸方程是常考的基礎題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.13、【解題分析】
化簡函數(shù)解析式為,做出函數(shù)的圖象,數(shù)形結(jié)合可得的取值范圍.【題目詳解】解:因為所以,,由,可得,則函數(shù),的圖象與直線恰有兩個不同交點,即方程在上有兩個不同的解,畫出的圖象如下所示:依題意可得時,函數(shù)的圖象與直線恰有兩個不同交點,故答案為:【題目點撥】本題主要考查正弦函數(shù)的最大值和單調(diào)性,函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.14、【解題分析】
直接聯(lián)立方程得到答案.【題目詳解】聯(lián)立方程解得即兩直線的交點坐標為.故答案為【題目點撥】本題考查了兩直線的交點,屬于簡單題.15、1【解題分析】
根據(jù)等比數(shù)列前項和公式,由可得,通過化簡可得,代入的值即可得結(jié)果.【題目詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【題目點撥】本題主要考查等比數(shù)列的前項和公式,本題解題的關鍵是看出數(shù)列的公比的值,屬于基礎題.16、.【解題分析】
計算出,利用輔助角公式進行化簡,并求出的最大值,可得出的最大值.【題目詳解】,,,所以,,當且僅當,即當,等號成立,因此,的最大值為,故答案為.【題目點撥】本題考查平面向量模的最值的計算,涉及平面向量數(shù)量積的坐標運算以及三角恒等變換思想的應用,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解題分析】
(1)設的公差為,則由已知條件得,.化簡得解得故通項公式,即.(2)由(1)得.設的公比為,則,從而.故的前項和.18、(1),;(2)的最大值是,最小值是.【解題分析】試題分析:(1)由條件列關于公差與公比的方程組,解得,,再根據(jù)等差與等比數(shù)列通項公式求通項公式(2)化簡可得,再根據(jù)等比數(shù)列求和公式得,結(jié)合函數(shù)單調(diào)性,可確定其最值試題解析:(1)設等差數(shù)列的公差為,等比數(shù)列的公比為,則解得,,所以,.(2)由(1)得,故,當為奇數(shù)時,,隨的增大而減小,所以;當為偶數(shù)時,,隨的增大而增大,所以,令,,則,故在時是增函數(shù).故當為奇數(shù)時,;當為偶數(shù)時,,綜上所述,的最大值是,最小值是.19、(1);(2)【解題分析】
(1)將)化簡為,代入從而求得結(jié)果.(2)由,得,從而確定的范圍.【題目詳解】(1)(2)由,得解得,,即的取值范圍是【題目點撥】本題主要考查三角函數(shù)的化簡求值,不等式的求解,意在考查學生的運算能力和分析能力,難度不大.20、(1)見解析;(2)【解題分析】
(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【題目詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設,在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【題目點撥】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能力,還考查了線面角知識,考查了二面角的平面角作法,考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公益慈善晚會活動策劃與實施合同4篇
- 2025年度互聯(lián)網(wǎng)內(nèi)容提供商ICP證年審全權(quán)委托服務合同3篇
- 二零二五年度生物科技研發(fā)農(nóng)民工就業(yè)服務合同4篇
- 電子商務平臺消費者權(quán)益保護2025年度國際協(xié)調(diào)合同2篇
- 2025年度牛肝菌有機認證與市場拓展合同
- 二零二五版昆明滇池度假區(qū)酒店管理合同3篇
- 二零二五年度農(nóng)業(yè)種植勞務作業(yè)承包合同范本3篇
- 2025年度塑料管材國際貿(mào)易爭端解決合同
- 2025年度私立學校校長任期教育科研成果轉(zhuǎn)化合同
- 二零二五年度企業(yè)員工期權(quán)激勵合同范本
- 廣東省佛山市2025屆高三高中教學質(zhì)量檢測 (一)化學試題(含答案)
- 人教版【初中數(shù)學】知識點總結(jié)-全面+九年級上冊數(shù)學全冊教案
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學2023-2024學年七上期末數(shù)學試題(解析版)
- 2024-2025學年人教版七年級英語上冊各單元重點句子
- 2025新人教版英語七年級下單詞表
- 公司結(jié)算資金管理制度
- 2024年小學語文教師基本功測試卷(有答案)
- 未成年入職免責協(xié)議書
- 項目可行性研究報告評估咨詢管理服務方案1
- 5歲幼兒數(shù)學練習題
- 2024年全國體育單招英語考卷和答案
評論
0/150
提交評論