2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省衢州市高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則下列不等式成立的是A. B. C. D.2.在中,分別為角的對(duì)邊),則的形狀是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形3.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.254.已知全集,則集合A. B. C. D.5.已知,,則點(diǎn)在直線上的概率為()A. B. C. D.6.已知點(diǎn)在第四象限,則角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,,則在方向上的投影為()A.1 B.2 C.3 D.48.若實(shí)數(shù)x,y滿足x2y2A.4,8 B.8,+9.角的終邊經(jīng)過點(diǎn)且,則的值為()A.-3 B.3 C.±3 D.510.的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知平行四邊形的周長(zhǎng)為,,則平行四邊形的面積是_______12.若,,則的值為______.13.有一個(gè)底面半徑為2,高為2的圓柱,點(diǎn),分別為這個(gè)圓柱上底面和下底面的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)或的距離不大于1的概率是________.14.設(shè)集合,它共有個(gè)二元子集,如、、等等.記這個(gè)二元子集為、、、、,設(shè),定義,則_____.(結(jié)果用數(shù)字作答)15.已知方程的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則_____.16.______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某廠每年生產(chǎn)某種產(chǎn)品萬件,其成本包含固定成本和浮動(dòng)成本兩部分.已知每年固定成本為20萬元,浮動(dòng)成本,.若每萬件該產(chǎn)品銷售價(jià)格為40萬元,且每年該產(chǎn)品產(chǎn)銷平衡.(1)設(shè)年利潤(rùn)為(萬元),試求與的關(guān)系式;(2)年產(chǎn)量為多少萬件時(shí),該廠所獲利潤(rùn)最大?并求出最大利潤(rùn).18.某校研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.(1)求直方圖中的值;(2)求輛純電動(dòng)汽車?yán)m(xù)駛里程的中位數(shù);(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程為的概率.19.已知函數(shù).(1)求的最小正周期和上的單調(diào)增區(qū)間:(2)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.20.如圖所示,在直三棱柱中,,,M、N分別為、的中點(diǎn).求證:平面;求證:平面.21.設(shè)為等差數(shù)列的前項(xiàng)和,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)令,且數(shù)列的前項(xiàng)和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

利用的單調(diào)性直接判斷即可?!绢}目詳解】因?yàn)樵谏线f增,又,所以成立。故選:C【題目點(diǎn)撥】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題。2、A【解題分析】

根據(jù)正弦定理得到,化簡(jiǎn)得到,得到,得到答案.【題目詳解】,則,即,即,,故,.故選:.【題目點(diǎn)撥】本題考查了正弦定理判斷三角形形狀,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.3、B【解題分析】

計(jì)算出向量的坐標(biāo),再利用向量的求模公式計(jì)算出的值.【題目詳解】由題意可得,因此,,故選B.【題目點(diǎn)撥】本題考查向量模的計(jì)算,解題的關(guān)鍵就是求出向量的坐標(biāo),并利用坐標(biāo)求出向量的模,考查運(yùn)算求解能力,屬于基礎(chǔ)題.4、C【解題分析】

直接利用集合補(bǔ)集的定義求解即可.【題目詳解】因?yàn)槿?,所?,2屬于全集且不屬于集合A,所以集合,故選:C.【題目點(diǎn)撥】本題主要考查集合補(bǔ)集的定義,屬于基礎(chǔ)題.5、B【解題分析】

先求出點(diǎn))的個(gè)數(shù),然后求出點(diǎn)在直線上的個(gè)數(shù),最后根據(jù)古典概型求出概率.【題目詳解】點(diǎn)的個(gè)數(shù)為,其中點(diǎn)三點(diǎn)在直線上,所以點(diǎn)在直線上的概率為,故本題選B.【題目點(diǎn)撥】本題考查了古典概型概率的計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力.6、B【解題分析】

根據(jù)第四象限內(nèi)點(diǎn)的坐標(biāo)特征,再根據(jù)正弦值、正切值的正負(fù)性直接求解即可.【題目詳解】因?yàn)辄c(diǎn)在第四象限,所以有:是第二象限內(nèi)的角.故選:B【題目點(diǎn)撥】本題考查了正弦值、正切值的正負(fù)性的判斷,屬于基礎(chǔ)題.7、A【解題分析】

根據(jù)正弦定理,將已知條件進(jìn)行轉(zhuǎn)化化簡(jiǎn),結(jié)合兩角和差的正弦公式可求,根據(jù)在方向上的投影為,代入數(shù)值,即可求解.【題目詳解】因?yàn)?,所以,即,即,因?yàn)?,所以,所以,所以在方向上的投影為:.故選:A.【題目點(diǎn)撥】本題主要考查正弦定理和平面向量投影的應(yīng)用,根據(jù)正弦定理結(jié)合兩角和差的正弦公式是解決本題的關(guān)鍵,屬于中檔題.8、A【解題分析】

利用基本不等式得x2y2【題目詳解】∵x2y2≤(x2+y2)24∴x2故選A.【題目點(diǎn)撥】本題考查基本不等式求最值問題,解題關(guān)鍵是掌握基本不等式的變形應(yīng)用:ab≤(a+b)9、B【解題分析】

根據(jù)三角函數(shù)的定義建立方程關(guān)系即可.【題目詳解】因?yàn)榻堑慕K邊經(jīng)過點(diǎn)且,所以則解得【題目點(diǎn)撥】本題主要考查三角函數(shù)的定義的應(yīng)用,應(yīng)注意求出的b為正值.10、B【解題分析】由誘導(dǎo)公式可得,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長(zhǎng),即求出平行四邊形的面積【題目詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【題目點(diǎn)撥】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡(jiǎn)單化.12、【解題分析】

求出,將展開即可得解.【題目詳解】因?yàn)椋?,所以,所?【題目點(diǎn)撥】本題主要考查了三角恒等式及兩角和的正弦公式,考查計(jì)算能力,屬于基礎(chǔ)題.13、【解題分析】

本題利用幾何概型求解.先根據(jù)到點(diǎn)的距離等于1的點(diǎn)構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點(diǎn)到點(diǎn),的距離不大于1的概率;【題目詳解】解:由題意可知,點(diǎn)P到點(diǎn)或的距離都不大于1的點(diǎn)組成的集合分別以、為球心,1為半徑的兩個(gè)半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【題目點(diǎn)撥】本題主要考查幾何概型、圓柱和球的體積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測(cè)度為體積比.14、1835028【解題分析】

分別分析中二元子集中較大元素分別為、、、時(shí),對(duì)應(yīng)的二元子集中較小的元素,再利用題中的定義結(jié)合數(shù)列求和思想求出結(jié)果.【題目詳解】當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、;當(dāng)二元子集較大的數(shù)為,則較小的數(shù)為、、、、.由題意可得,令,得,上式下式得,化簡(jiǎn)得,因此,,故答案為:.【題目點(diǎn)撥】本題考查新定義,同時(shí)也考查了數(shù)列求和,解題的關(guān)鍵就是找出相應(yīng)的規(guī)律,列出代數(shù)式進(jìn)行計(jì)算,考查運(yùn)算求解能力,屬于難題.15、【解題分析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個(gè)方程的根,代入方程即可求得m,則方程的另一個(gè)根可求;設(shè)另一個(gè)方程的根為s,t,(s≤t)根據(jù)韋達(dá)定理可知∴s+t=2根據(jù)等差中項(xiàng)的性質(zhì)可知四個(gè)跟成的等差數(shù)列為,s,t,,進(jìn)而根據(jù)數(shù)列的第一項(xiàng)和第四項(xiàng)求得公差,則s和t可求,進(jìn)而根據(jù)韋達(dá)定理求得n,最后代入|m﹣n|即可.【題目詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個(gè)根為.設(shè)方程②的另一個(gè)根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項(xiàng)的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【題目點(diǎn)撥】本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生創(chuàng)造性思維和解決問題的能力.16、【解題分析】

先令,得到,兩式作差,根據(jù)等比數(shù)列的求和公式,化簡(jiǎn)整理,即可得出結(jié)果.【題目詳解】令,則,兩式作差得:所以故答案為:【題目點(diǎn)撥】本題主要考查數(shù)列的求和,熟記錯(cuò)位相加法求數(shù)列的和即可,屬于??碱}型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)產(chǎn)量(萬件)時(shí),該廠所獲利潤(rùn)最大為100萬元.【解題分析】

(1)由銷售收入減去成本可得利潤(rùn);(2)分段求出的最大值,然后比較可得.【題目詳解】(1)由題意;即;(2)時(shí),,時(shí),,當(dāng)時(shí),在是遞增,在上遞減,時(shí),綜上,產(chǎn)量(萬件)時(shí),該廠所獲利潤(rùn)最大為100萬元.【題目點(diǎn)撥】本題考查函數(shù)模型的應(yīng)用,根據(jù)所給函數(shù)模型求出函數(shù)解析式,然后由分段函數(shù)性質(zhì)分段求出最大值,比較后得出函數(shù)最大值.考查學(xué)生的應(yīng)用能力.18、(1)(2)(3)【解題分析】

(1)利用小矩形的面積和為,求得值,即可求得答案;(2)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線橫坐標(biāo),即可求得答案;(3)據(jù)直方圖求出續(xù)駛里程在和續(xù)駛里程在的車輛數(shù),利用排列組合和概率公式求出其中恰有一輛車的續(xù)駛里程在的概率,即可求得答案.【題目詳解】(1)由直方圖可得:(2)根據(jù)中位數(shù)的計(jì)算方法為:把頻率分布直方圖分成兩個(gè)面積相等部分的平行于軸的直線橫坐標(biāo).直方圖可得:可得:輛純電動(dòng)汽車?yán)m(xù)駛里程的中位數(shù).(3)續(xù)駛里程在的車輛數(shù)為:續(xù)駛里程在第五組的車輛數(shù)為.從輛車中隨機(jī)抽取輛車,共有中抽法,其中恰有一輛車的續(xù)駛里程在的抽法有種,其中恰有一輛車的續(xù)駛里程在的概率為.【題目點(diǎn)撥】本題考查根據(jù)條型統(tǒng)計(jì)圖求數(shù)據(jù)的中位數(shù)和根據(jù)組合數(shù)求概率問題,解題關(guān)鍵是掌握條型統(tǒng)計(jì)圖基礎(chǔ)知識(shí)和概率的求法,考查了分析能力和計(jì)算能力,屬于中檔題.19、(1)T=π,單調(diào)增區(qū)間為,(2)【解題分析】

(1)化簡(jiǎn)函數(shù)得到,再計(jì)算周期和單調(diào)區(qū)間.(2)分情況的不同奇偶性討論,根據(jù)函數(shù)的最值得到答案.【題目詳解】解:(1)函數(shù)故的最小正周期.由題意可知:,解得:,因?yàn)?,所以的單調(diào)增區(qū)間為,(2)由(1)得∵∴,∴,若對(duì)任意的和恒成立,則的最小值大于零.當(dāng)為偶數(shù)時(shí),,所以,當(dāng)為奇數(shù)時(shí),,所以,綜上所述,的范圍為.【題目點(diǎn)撥】本題考查了三角函數(shù)化簡(jiǎn),周期,單調(diào)性,恒成立問題,綜合性強(qiáng),意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)見解析;(2)見解析.【解題分析】

(1)推導(dǎo)出,從而平面,進(jìn)而,再由,,得是正方形,由此能證明平面.取的中點(diǎn)F,連BF、推導(dǎo)出四邊形BMNF是平行四邊形,從而,由此能證明平面.【題目詳解】證明:在直三棱柱中,側(cè)面底面ABC,且側(cè)面底面,,即,平面,平面,,,是正方形,,平面取的中點(diǎn)F,連BF、在中,N、F是中點(diǎn),,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【題目點(diǎn)撥】本題考查線面垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論