版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆甘肅省會寧縣第五中學高一數(shù)學第二學期期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用數(shù)學歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗證n=1成立時,左邊的項是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a42.函數(shù)的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.3.在中,若,則下列結(jié)論錯誤的是()A.當時,是直角三角形 B.當時,是銳角三角形C.當時,是鈍角三角形 D.當時,是鈍角三角形4.如圖,兩個正方形和所在平面互相垂直,設、分別是和的中點,那么:①;②平面;③;④、異面.其中不正確的序號是()A.① B.② C.③ D.④5.正六邊形的邊長為,以頂點為起點,其他頂點為終點的向量分別為;以頂點為起點,其他頂點為終點的向量分別為.若分別為的最小值、最大值,其中,則下列對的描述正確的是()A. B. C. D.6.圓周運動是一種常見的周期性變化現(xiàn)象,可表述為:質(zhì)點在以某點為圓心半徑為r的圓周上的運動叫“圓周運動”,如圖所示,圓O上的點以點A為起點沿逆時針方向旋轉(zhuǎn)到點P,若連接OA、OP,形成一個角,當角,則()A. B. C. D.17.如圖,中,,,用表示,正確的是()A. B.C. D.8.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=()A.12 B.16 C.20 D.249.在銳角中ΔABC,角A,B所對的邊長分別為a,b.若2asinA.π12B.π6C.π10.若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將二進制數(shù)110轉(zhuǎn)化為十進制數(shù)的結(jié)果是_____________.12.直線與直線垂直,則實數(shù)的值為_______.13.某中學初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.14.設,其中,則的值為________.15.已知的圓心角所對的弧長等于,則該圓的半徑為______.16.若在等比數(shù)列中,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面是矩形,底面,是的中點,已知,,,求:(1)直線與平面所成角的正切值;(2)三棱錐的體積.18.已知,,且(Ⅰ)求的值;(Ⅱ)若,求的值.19.已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.(1)若,,分別寫出數(shù)列和數(shù)列的通項公式;(2)若是奇函數(shù),且,求;(3)若函數(shù)的圖像關(guān)于點對稱,且當時,函數(shù)取得最小值,求的最小值.20.設是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.21.在中,,.(1)求角B的大??;(2)的面積,求的邊BC的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
在驗證時,左端計算所得的項,把代入等式左邊即可得到答案.【題目詳解】解:用數(shù)學歸納法證明,
在驗證時,把當代入,左端.
故選:C.【題目點撥】此題主要考查數(shù)學歸納法證明等式的問題,屬于概念性問題.2、B【解題分析】
根據(jù)最小正周期為求解與解析式,再求解的對稱軸判斷即可.【題目詳解】因為最小正周期為,故.故,對稱軸方程為,解得.當時,.故選:B【題目點撥】本題主要考查了三角函數(shù)最小正周期的應用以及對稱軸的計算.屬于基礎題.3、D【解題分析】
由正弦定理化簡已知可得,利用余弦定理,勾股定理,三角形兩邊之和大于第三邊等知識逐一分析各個選項即可得解.【題目詳解】解:為非零實數(shù)),可得:,由正弦定理,可得:,對于A,時,可得:,可得,即為直角,可得是直角三角形,故正確;對于B,時,可得:,可得為最大角,由余弦定理可得,可得是銳角三角形,故正確;對于C,時,可得:,可得為最大角,由余弦定理可得,可得是鈍角三角形,故正確;對于D,時,可得:,可得,這樣的三角形不存在,故錯誤.故選:D.【題目點撥】本題主要考查了正弦定理,余弦定理,勾股定理在解三角形中的應用,考查了分類討論思想,屬于基礎題.4、D【解題分析】
取的中點,連接,,連接,,由線面垂直的判定和性質(zhì)可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【題目詳解】解:取的中點,連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點,可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯誤.故選:D.【題目點撥】本題主要考查空間線線和線面的位置關(guān)系,考查轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎題.5、A【解題分析】
利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,從而得到結(jié)論.【題目詳解】由題意,以頂點A為起點,其他頂點為終點的向量分別為,以頂點D為起點,其他頂點為終點的向量分別為,則利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,又因為分別為的最小值、最大值,所以,故選A.【題目點撥】本題主要考查了向量的數(shù)量積運算,其中解答中熟記向量的數(shù)量積的運算公式,分析出向量數(shù)量積的正負是關(guān)鍵,著重考查了分析解決問題的能力,屬于中檔試題.6、A【解題分析】
運用求任意角的三角函數(shù)值的步驟:化正、脫周、變銳角和求值,可得所求值.【題目詳解】.故選:A.【題目點撥】本題考查任意角三角函數(shù)值的求法,屬于基礎題.7、C【解題分析】
由平面向量基本定理和三角形法則求解即可【題目詳解】由,可得,則,即.故選C.【題目點撥】本題考查平面向量基本定理和三角形法則,熟記定理和性質(zhì)是解題關(guān)鍵,是基礎題8、D【解題分析】由等差數(shù)列的性質(zhì)可得,則,故選D.9、D【解題分析】試題分析:∵2a考點:正弦定理解三角形10、A【解題分析】試題分析:,故選A.考點:兩角和與差的正切公式.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解題分析】
將二進制數(shù)從右開始,第一位數(shù)字乘以2的0次冪,第二位數(shù)字乘以2的1次冪,以此類推,進行計算即可.【題目詳解】,故答案為:6.【題目點撥】本題考查進位制,解題關(guān)鍵是了解不同進制數(shù)之間的換算法則,屬于基礎題.12、【解題分析】
由題得(-1),解之即得a的值.【題目詳解】由題得(-1),所以a=2.故答案為;2【題目點撥】本題主要考查兩直線垂直的斜率關(guān)系,意在考查學生對該知識的理解掌握水平和分析推理能力.13、【解題分析】
由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【題目詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【題目點撥】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.14、【解題分析】
由兩角差的正弦公式以及誘導公式,即可求出的值.【題目詳解】,所以,因為,故.【題目點撥】本題主要考查兩角差的正弦公式的逆用以及誘導公式的應用.15、【解題分析】
先將角度化為弧度,再根據(jù)弧長公式求解.【題目詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【題目點撥】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.16、【解題分析】
根據(jù)等比中項的性質(zhì),將等式化成即可求得答案.【題目詳解】是等比數(shù)列,若,則.因為,所以,.故答案為:1.【題目點撥】本題考查等比中項的性質(zhì),考查基本運算求解能力,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)要求直線與平面所成角的正切值,先要找到直線在平面上的射影,即在直線上找一點作平面的垂線,結(jié)合已知與圖形,轉(zhuǎn)化為證明平面再求解;(2)三棱錐的體積計算在于選取合適的底和高,此題以為底,與的中點的連線為高計算更為快速,從而轉(zhuǎn)化為證明平面再求解.【題目詳解】(1)平面,平面又,,平面,平面所以平面,所以為直線與平面所成角。易證是一個直角三角形,所以.(2)如圖,設的中點為,則,平面,平面,又,,,又,,,所以平面,所以為三棱錐的高.因此可求【題目點撥】本題主要考察線面角與三棱錐體積的計算.線面角的關(guān)鍵在于找出直線在平面上的射影,一般轉(zhuǎn)化為直線與平面的垂直;三棱錐體積的計算主要在于選擇合適的底和高.18、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)根據(jù)題中條件,求出,進而可得,再由兩角差的正切公式,即可得出結(jié)果;(Ⅱ)根據(jù)題中條件,得到,求出,再由,根據(jù)兩角差的正弦公式,即可求出結(jié)果.【題目詳解】(Ⅰ)因為,,所以,因此,所以;(Ⅱ)因為,,所以,又,所以,所以,因此.【題目點撥】本題主要考查三角恒等變換,給值求值的問題,熟記公式即可,屬于??碱}型.19、(1),;(2);(3)1【解題分析】
(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求解;(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得(3)將化成的形式,依題意有,從而得到,因為當時,函數(shù)取得最小值,所以,兩式相減即可求解.【題目詳解】(1)由等差數(shù)列、等比數(shù)列的通項公式可得,;(2)因為,所以即,所以又由,得(3)記,則,其中;因為的圖像關(guān)于點對稱,所以①因為當時,函數(shù)取得最小值,所以②②-①得,因為,當,時,取得最小值為0【題目點撥】本題主要考查了等差數(shù)列、等比數(shù)列的通項公式的求法、三角函數(shù)的化簡以及正弦型函數(shù)圖像的性質(zhì),考查較全面,屬于難題.20、(I);(II).【解題分析】
(I)設公差為,根據(jù)題意可列關(guān)于的方程組,求解,代入通項公式可得;(II)由(I)可得,進而可利用等比數(shù)列求和公式進行求解.【題目詳解】(I)設等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項,2為公比的等比數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作辦學項目協(xié)議范本
- 重型吊車租賃合同范本
- 展覽活動參展協(xié)議書模板
- 2024裝修大包合同模板
- 2024年離婚協(xié)議書范本簡易
- 新服裝定制合同樣本
- 2.2 創(chuàng)新永無止境導學案 2024-2025學年統(tǒng)編版道德與法治九年級上冊
- 債券認購與債權(quán)轉(zhuǎn)讓合同實務
- 門店租賃合同協(xié)議書
- 上海市超市洗滌產(chǎn)品流通安全協(xié)議
- 行政服務中心窗口工作人員手冊
- 最新患者用藥情況監(jiān)測
- 試樁施工方案 (完整版)
- ESTIC-AU40使用說明書(中文100版)(共138頁)
- 河北省2012土建定額說明及計算規(guī)則(含定額總說明)解讀
- 中工商計算公式匯總.doc
- 深圳市建筑裝飾工程消耗量標準(第三版)2003
- 《初中英語課堂教學學困生轉(zhuǎn)化個案研究》開題報告
- 鋼筋桁架樓承板施工方案
- 恒溫箱PLC控制系統(tǒng)畢業(yè)設計
- 176033山西《裝飾工程預算定額》定額說明及計算規(guī)則
評論
0/150
提交評論