江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第1頁
江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第2頁
江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第3頁
江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第4頁
江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省南昌外國語學校2024屆數(shù)學高一第二學期期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù),則的值為()A. B. C. D.2.設(shè)等比數(shù)列{an}的前n項和為Sn,若S6A.73 B.2 C.83.己知關(guān)于的不等式解集為,則突數(shù)的取值范圍為()A. B.C. D.4.已知變量與負相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù),則由該觀測數(shù)據(jù)算得的線性回歸方程可能是A. B.C. D.5.已知等比數(shù)列的公比為正數(shù),且,則()A. B. C. D.6.已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則()A.31 B.32 C. D.7.已知集,集合,則A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)8.過點作拋物線的兩條切線,切點為,則的面積為()A. B. C. D.9.中,,,,則的面積等于()A. B. C.或 D.或10.某高中三個年級共有3000名學生,現(xiàn)采用分層抽樣的方法從高一、高二、高三年級的全體學生中抽取一個容量為30的樣本進行視力健康檢查,若抽到的高一年級學生人數(shù)與高二年級學生人數(shù)之比為3∶2,抽到高三年級學生10人,則該校高二年級學生人數(shù)為()A.600 B.800 C.1000 D.1200二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和為,若對任意,都有,則數(shù)列的前項和為________12.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.13.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.14.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.15.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.16.已知圓錐的高為,體積為,用平行于圓錐底面的平面截圓錐,得到的圓臺體積是,則該圓臺的高為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)解關(guān)于的不等式;(2)若不等式的解集為,求實數(shù),的值.18.在中,求的值.19.設(shè)數(shù)列的前項和為,對于,,其中是常數(shù).(1)試討論:數(shù)列在什么條件下為等比數(shù)列,請說明理由;(2)設(shè),且對任意的,有意義,數(shù)列的前項和為.若,求的最大值.20.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.21.已知是公差不為0的等差數(shù)列,,,成等比數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,證明:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關(guān)系,代值進行計算即可.【題目詳解】解:由已知,又,又,所以:.

故選:D.【題目點撥】本題考查了分段函數(shù)的函數(shù)值計算問題,抓住定義域的范圍,屬于基礎(chǔ)題.2、A【解題分析】解:因為等比數(shù)列{an}的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S63、C【解題分析】

利用絕對值的幾何意義求解,即表示數(shù)軸上與和-2的距離之和,其最小值為.【題目詳解】∵,∴由解集為,得,解得.故選C.【題目點撥】本題考查絕對值不等式,考查絕對值的性質(zhì),解題時可按絕對值定義去絕對值符號后再求解,也可應(yīng)用絕對值的幾何意義求解.不等式解集為,可轉(zhuǎn)化為的最小值不小于1,這是解題關(guān)鍵.4、D【解題分析】

由于變量與負相關(guān),得回歸直線的斜率為負數(shù),再由回歸直線經(jīng)過樣本點的中心,得到可能的回歸直線方程.【題目詳解】由于變量與負相關(guān),排除A,B,把代入直線得:成立,所以在直線上,故選D.【題目點撥】本題考查回歸直線斜率的正負、回歸直線過樣本點中心,考查基本數(shù)據(jù)處理能力.5、D【解題分析】設(shè)公比為,由已知得,即,又因為等比數(shù)列的公比為正數(shù),所以,故,故選D.6、A【解題分析】

根據(jù)與的等差中項為,可得到一個等式,和,組成一個方程組,結(jié)合等比數(shù)列的性質(zhì),這個方程組轉(zhuǎn)化為關(guān)于和公比的方程組,解這個方程組,求出和公比的值,再利用等比數(shù)列前項和公式,求出的值.【題目詳解】因為與的等差中項為,所以,因此有,故本題選A.【題目點撥】本題考查了等差中項的性質(zhì),等比數(shù)列的通項公式以及前項和公式,7、D【解題分析】

根據(jù)函數(shù)的單調(diào)性解不等式,再解絕對值不等式,最后根據(jù)交集的定義求解.【題目詳解】由得,由得,所以,故選D.【題目點撥】本題考查指數(shù)不等式和絕對值不等式的解法,集合的交集.指數(shù)不等式要根據(jù)指數(shù)函數(shù)的單調(diào)性求解.8、B【解題分析】設(shè)拋物線過點的切線方程為,即,將點代入可得,同理都滿足方程,即為直線的方程為,與拋物線聯(lián)立,可得,點到直線的距離,則的面積為,故選B.【方法點晴】本題主要考查利用導數(shù)求曲線切線方程以及弦長公式與點到直線距離公式,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導數(shù),即在點出的切線斜率(當曲線在處的切線與軸平行時,在處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.9、D【解題分析】

先根據(jù)余弦定理求AC,再根據(jù)面積公式得結(jié)果.【題目詳解】因為,所以或2,因此的面積等于或等于,選D.【題目點撥】本題考查余弦定理與三角形面積公式,考查基本求解能力,屬基礎(chǔ)題.10、B【解題分析】

根據(jù)題意可設(shè)抽到高一和高二年級學生人數(shù)分別為和,則,繼而算出抽到的各年級人數(shù),再根據(jù)分層抽樣的原理可以推得該校高二年級的人數(shù).【題目詳解】根據(jù)題意可設(shè)抽到高一和高二年級學生人數(shù)分別為和,則,即,所以高一年級和高二年級抽到的人數(shù)分別是12人和8人,則該校高二年級學生人數(shù)為人.故選:.【題目點撥】本題考查分層抽樣的方法,屬于容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)數(shù)列的遞推公式,求得,再結(jié)合等差等比數(shù)列的前項和公式,即可求解,得到答案.【題目詳解】由題意,數(shù)列滿足,…①,…②由①-②,可得,即當時,,所以,則數(shù)列的前項和為.【題目點撥】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及等差、等比數(shù)列的前項和的應(yīng)用,其中解答中熟練應(yīng)用熟練的遞推公式得到數(shù)列的通項公式,再結(jié)合等差、等比數(shù)列的前項和公式的準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.12、①③【解題分析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.13、【解題分析】

利用正弦定理得到,再根據(jù)有兩解得到,計算得到答案.【題目詳解】由正弦定理得:若有兩解:故答案為【題目點撥】本題考查了正弦定理,有兩解,意在考查學生的計算能力.14、【解題分析】

通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【題目詳解】因為的面積為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【題目點撥】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯點注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.15、【解題分析】

設(shè)點,由和列方程組解出、的值,可得出向量的坐標.【題目詳解】設(shè)點的坐標為,則,由,得,解得,因此,,故答案為.【題目點撥】本題考查向量的坐標運算,解題時要將一些條件轉(zhuǎn)化為與向量坐標相關(guān)的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.16、【解題分析】設(shè)該圓臺的高為,由題意,得用平行于圓錐底面的平面截圓錐,得到的小圓錐體積是,則,解得,即該圓臺的高為3.點睛:本題考查圓錐的結(jié)構(gòu)特征;在處理圓錐的結(jié)構(gòu)特征時可記住常見結(jié)論,如本題中用平行于圓錐底面的平面截圓錐,截面與底面的面積之比是兩個圓錐高的比值的平方,所得兩個圓錐的體積之比是兩個圓錐高的比值的立方.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】

(1),再解一元二次不等式即可;(2)由題意得,,代入即可求出實數(shù),的值.【題目詳解】(1)∵,∴,∴,解得,∴原不等式的解集為;(2)由題意得,,即,解得或,∴或.【題目點撥】本題主要考查一元二次不等式的解法,考查三個二次之間的關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.18、【解題分析】

由即,解得:(因為舍去)或.19、(1)當,且時,數(shù)列一定為等比數(shù)列.理由見解析;(2)【解題分析】

(1)利用等比數(shù)列的定義證明數(shù)列為等比數(shù)列.(2)利用(1)的結(jié)論,進一步求出數(shù)列的和及最大值.【題目詳解】解:(1)對于,,,①.②①減②得,即,,.當,且時,數(shù)列一定為等比數(shù)列.(2)由(1)得,,由,得,即(或)由可解得.所以,.【題目點撥】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,疊加法在求數(shù)列的通項公式中的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.20、(1)①具有“性質(zhì)2”,②不具有“性質(zhì)4”;(2);(3)存在.【解題分析】

(1)①根據(jù)題意需要判斷的真假即可②根據(jù)題意判斷是否成立即可得出結(jié)論;(2)根據(jù)具有性質(zhì)2可求出的范圍,由存在性問題成立轉(zhuǎn)化為,根據(jù)函數(shù)的性質(zhì)求最值即可求解.【題目詳解】(1)①因為,成立,所以,故,0具有“性質(zhì)2”②因為,設(shè),則設(shè),對稱軸為,所以函數(shù)在上單調(diào)遞減,當時,,所以當時,不恒成立,即不成立,故(),0不具有“性質(zhì)4”.(2)因為,1具有“性質(zhì)2”所以化簡得解得或.因為存在及,使得成立,所以存在及使即可.令,則,當時,,所以在上是增函數(shù),所以時,,當時,,故時,因為在上單調(diào)遞減,在上單調(diào)遞增,所以,故只需滿足即可,解得.(3)假設(shè)具有“性質(zhì)2018”,則,即證明在任意2019個互不相同的實數(shù)中,一定存在兩個實數(shù),滿足:.證明:由,令,由萬能公式知,將等分成2018個小區(qū)間,則這2019個數(shù)必然有兩個數(shù)落在同一個區(qū)間,令其為:,即,也就是說,在,,,這2019個數(shù)中,一定有兩個數(shù)滿足,即一定存在兩個實數(shù),滿足,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論