同步涌現(xiàn)系綜序參量方法及其應(yīng)用_第1頁(yè)
同步涌現(xiàn)系綜序參量方法及其應(yīng)用_第2頁(yè)
同步涌現(xiàn)系綜序參量方法及其應(yīng)用_第3頁(yè)
同步涌現(xiàn)系綜序參量方法及其應(yīng)用_第4頁(yè)
同步涌現(xiàn)系綜序參量方法及其應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

同步涌現(xiàn):系綜序參量方法及其應(yīng)用鄭志剛,華僑大學(xué)系統(tǒng)科學(xué)研究所Email:IntroductionOrder-parameterdynamicsEnsembleorderparameter(EOP)ApproachKuramoto-SakaguchistarnetworksEOPapproach:ExtensionsConcludingRemarksOutlineKeywords:系綜序參量Ensembleorderparameter統(tǒng)計(jì)獨(dú)立性條件StatisticalIndependenceCondition主項(xiàng)近似Dominating-termapproximationReductionism:gloryanddilemma物理學(xué)發(fā)展300年:還原論----系統(tǒng)的拆裝:一切都?xì)w結(jié)為最基本的組成部分和決定它們行為的最基本的規(guī)律。最輝煌成就:原子結(jié)構(gòu)的探索原子是由原子核和電子構(gòu)成的,原子核是由中子和質(zhì)子構(gòu)成的,中子和質(zhì)子是由夸克構(gòu)成的,這些粒子的物理性質(zhì)是由它們之間的相互作用決定的。I.IntroductionsuperconductivitysuperfluidicityQuantumHalleffectJosephsoneffectBrainProtein多了就是不一樣涌現(xiàn)Emergence:Moreisdifferent平衡相變:對(duì)稱性自發(fā)破缺氣-液-固相變,鐵磁相變VanderWaals非平衡體系:非平衡相變與自組織IlyaPrigogine:DissipativeStructuresHermannHaken:Synergetics遠(yuǎn)平衡態(tài):原有熱力學(xué)分支失穩(wěn),出現(xiàn)新的結(jié)構(gòu)非平衡相變--自組織理論耗散結(jié)構(gòu)理論,協(xié)同學(xué)非平衡為有序之源,非平衡的世界豐富多彩StatisticalMechanics+NonlinearDynamics

→SystemsScience(系統(tǒng)科學(xué))集體行為:大自由度系統(tǒng)出現(xiàn)集體行為時(shí),系統(tǒng)的整體行為收縮到一個(gè)低維子空間(序參量空間)。協(xié)同學(xué)(H.Haken):slavingprinciple----消去快變量,慢變量(序參量)主宰整體行為自組織理論(I.Prigogine):利用宏觀變量方程來(lái)分析熱力學(xué)系統(tǒng)的非平衡行為與轉(zhuǎn)變同步:有序的涌現(xiàn)1673,ChristiaanHuygens相互作用擺鐘的同步擺動(dòng)螢火蟲的同步閃光1680,EngelbertKaempfer1935,HughSmith[HughSmith(1935),“Synchronousflashingoffireflies,”Science82:51.TheoreticalRoutetoSynchronizationWinfree的開創(chuàng)性工作(1967)A.T.Winfree,TheGeometryofBiologicalTime,Springer,NewYork,1980.

Kuramoto’sWorkfrom1975Y.Kuramoto,ChemicalOscillations,Waves,andTurbulence,Springer,Berlin,1984.KuramotoApproach同步轉(zhuǎn)變:非平衡相變序參量?jī)煞N解:Incoherentstate:homogeneousdistributionofphasesCoherentstate:lockingofphases兩種解在不同耦合強(qiáng)度下的穩(wěn)定性不同WhenN→∞,positionofthephasedistributionfunctionintotwoparts:自洽方程SuccessfulUnsuccessful不同集體態(tài)的穩(wěn)定性非定態(tài)的集體態(tài)研究同步理論研究的三個(gè)不同層次提出了同步分岔樹、非局域同步、部分同步的概念提出了同步與相空間維數(shù)轉(zhuǎn)變的關(guān)系----------------------------------------------------著作:《混沌控制》非線性科學(xué)叢書,上??萍冀逃霭嫔?2000).《耦合非線性系統(tǒng)的合作行為與時(shí)空動(dòng)力學(xué)》(高教出版社,2004)BookChapter:Synchronizationofcoupledphaseoscillators,Chapter9,p293-327,in“AdvancesinElectricalEngineeringResearch.Volume1”(NovaSciencePublishingHouse,2011).微觀動(dòng)力學(xué)層面:我們已有的研究工作論文:Phys.Rev.Lett.81,5318-5321(1998);Inter.J.Bif.&Chaos10,10,2399-2414(2000);Phys.Rev.E62,402-408(2000);62,7501–7504(2000);62,7882-7885(2000);62,3552-3557(2000);65,056211(2002);66,036208(2002);67,026223(2003);68,037202(2003);79,056210(2009);Europhys.Lett.74,2,229-235(2006);87,50006(2009);Chaos18,043109(2008);Sci.Rep.3,3522(2013);

J.Phys.A47,125101(2014).建立序參量動(dòng)力學(xué):耦合振子高維相空間動(dòng)力學(xué)(微觀描述)的低維描述(宏觀描述)研究序參量動(dòng)力學(xué)與分岔:集體行為相變與涌現(xiàn)Why?大量微觀自由度競(jìng)爭(zhēng)的結(jié)果,序參量的涌現(xiàn)過(guò)程很重要在很多非平衡系統(tǒng)中,宏觀序參量并不唯一,并非不隨時(shí)間變化(e.g.,limitcycles,chaos,……)熱力學(xué)極限Thermodynamiclimit-----統(tǒng)計(jì)力學(xué)有限系統(tǒng)---漲落---系綜方法我們的使命:序參量分析的動(dòng)力學(xué)基礎(chǔ)是快慢變量競(jìng)爭(zhēng),物理學(xué)基礎(chǔ)是系統(tǒng)的微觀對(duì)稱性與對(duì)稱破缺(類似于相變)序參量動(dòng)力學(xué)的穩(wěn)定性與分岔對(duì)應(yīng)于宏觀態(tài)及其相變吸引域及其變化決定了同步轉(zhuǎn)變的連續(xù)性(爆炸性同步)TheOtt-AntonsenApproachE.OttandT.M.Antonsen,Lowdimensionalbehavioroflargesystemsofgloballycoupledoscillators,Chaos18,037113(2008).Mean-fieldKuramotoModelIntroducinganorderparameterII.Order-parameterdynamicsMoregenerally一組廣義序參量HomogeneousparametersinhomogeneousparametersIdenticaloscillatorsThermodynamiclimitContinuityequation所有宏觀量都可以通過(guò)微觀變量的統(tǒng)計(jì)平均得到。Theorderparameters:MicroscopicdynamicsStatisticsMacroscopicdescriptionFourierexpansionAsimplecaseOnehasOtt-AntonsenAnsatz!Wegetasingleequationofsingleorder-parametereq.:InvariantmanifoldTheinfinitelymanydynamicalequationsoforderparametersarereducedtoasingleequationonthismanifoldandthecorrespondingphasedensityistheso-calledPoissonkerneldistribution:Poissonmanifold:Ifonechoosestheinitialstateonthismanifold,thestatewillneverevolveoutofit.Emergence:DimensionReductionInvariantmanifold:Infact,itisnotanansatz.SupposeOnegetsOA!III.Ensembleorderparameter(EOP)ApproachArequirementforstatisticaltreatmentofpopulationsofoscillators:Howtodoforfinitenumberofoscillators?OrderparameterThesameasthethermodynamic-limitcase.ItseemsthatifoneinsertstheOAAnsatz,onegetsthesameequationoforderparameter.Doesitwork?

------No.Inthecaseofafinitenumberofoscillators,thePoissonmanifoldsatisfyingtheOAansatzisnotattainable.Exceptthesynchronousstate,allthestatesofthesystemoffiniteoscillatorslieoutofthisPoissonmanifold.Wecanbuildanothersystemwiththesameorder-parameterequationsbutnotlimitedbythefinitesize.-----Theensemblemethod.LetusconsideranensemblewithMidenticalsystemsofNoscillatorsobeyingthesamedynamicalequationsandsameparameters.Theinitialphasesofoscillatorsarechosenfromthesamedistribution,whichmakesthemeanvaluesoforderparameters{αn}overtheensemblehavethelimitwhenthenumberofsamplingM→∞.Oneneedstoperformensembleaveragetotheaboveequation:Unclosed,notself-consistentTypicalcaseI:

CouplingfunctionwithonecomponentEOPequations:StatisticalIndependenceGeneralizedOAansatzThevalidityoftheaboveEOPequationdependslargelyonthedegreeofstatisticalindependence.ErrorfunctionIV.Kuramoto-SakaguchistarnetworksIngredientsofheterogeneousnetworks,e.g.,thescale-freenetworksByintroducingOrderparameterThesystemfallsintotheframeworkdiscussedabove-----thefirstthreenonzeroFouriercoeffcientsofthecouplingfunction.Finitesize:EnsembleorderparameterschemeIntroducingIfResultforstatisticalindependenceapprox.TheinitialconditionsarechosenfromthePoissonkernel.TheensembleorderparametersevolvesonaninvariantmanifoldForsystemsoffiniteoscillators,theensembleorderparametermethodplaysthedominantroleinrevealingthekeycollectivestructureofcoupledoscillatorsystems.ForadetailedstudyofsynchronizationdynamicsonstarnetworksintheframeworkofEOP,pleasereferto:CanXu,JianGao,YutingSun,XiaHuang,andZhigangZheng*,Sci.Rep.5,12039;YutingSun,JianGao,CanXu,XiaHuang,andZhigangZheng*,Ensembleorderparameteranalysisofsynchronizationonstarnetworks,PRE(2015).WhenmorethanthreeFouriercoefficientsofthecouplingfunctionarenonzero,thetraditionalOAschememayfail.BUTtheEOPapproachisstillapplicable!Thepriceoftheensembleorderparameterdescriptionistheerrorinducedbythestatisticalindependenceassumption,whosevaliditycanbecheckedbynumericalresults.V.EOPapproach:Extensions1.ThecaseofHigherordercouplingonlyEOPeqs.OAsolutioninvariantmanifoldsub-manifoldofthePoissonmanifold2.Mixtureofhigherordercouplings:theDominating-termassumptionCouplingfunctionwiththefirstfivenonzeroFouriercoefficientsEOPequations:OAsolutionTrivialDoesOA-likesolutionexist?thisconditioncanbesatisfiedaroundthevicinityofsynchronizationsatesandincoherentstates.Ingeneral,ifwechoosetheinitialconditionsas,andalongtheevolution,thedifferencesofhighertermsαn

withα_1^ncankeepsmallenough,theconsistentconditioncanbesatisfiednaturally.Dominating-termAssumptionThefirstequationisgotfromthedynamicsofthefirstorderparameter.Thesecondequationisgotfromthehigher-orderorderparameters.FortherelationofapproximatedOAansatz,thehighertermsaremuchsmallerthanthefirstone,thefirstequationcanbeconsideredasthedominatingterm.ExampleVI.ConcludingremarksWefocusedonthetheoreticaldescriptionoflow-dimensionalorder-parameterdynamicsofthecollectivebehaviorsincoupledphaseoscillators.Wederivedtheclosedformofdynamicalequationsfororderparameters,wherethePoissonkernelbeinganinvariantmanifoldandtheimprovedOAansatz.EOPapproachissuitableforsystemsofbothfiniteandinfinite,identicalandnonidenticaloscillators.Inourapproach,thescopeoftheOAansatzisdeterminedastwoparts,i.e.,thelimitofinfinitelymanyoscillatorsandtheconditionthatonlythefirstthreeFouriercoeffcientsofthecouplingstrengtharenonzero.合作者博士生:徐燦碩士生:高健

孫玉庭

向海蓉J.Gao,C.Xu,Y.Sun,andZ.Zheng*,Orderparameteranalysisforlow-dimensionalbehaviorsofcoupledphase-oscillators,ScientificReports(2016,submitted);

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論