版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省越秀外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等差數(shù)列的前項(xiàng)和為,,,則使取得最大值時(shí)的值為()A.5 B.6 C.7 D.82.若,則與夾角的余弦值為()A. B. C. D.13.已知圓(為圓心,且在第一象限)經(jīng)過(guò),,且為直角三角形,則圓的方程為()A. B.C. D.4.“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.非充分非必要條件5.在區(qū)間上隨機(jī)選取一個(gè)數(shù),則的概率為()A. B. C. D.6.在三棱錐中,,,,平面平面,則三棱錐外接球的表面積為()A. B. C. D.7.已知等差數(shù)列的公差,前項(xiàng)和為,則對(duì)正整數(shù),下列四個(gè)結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.如果若干個(gè)函數(shù)的圖象經(jīng)過(guò)平移后能夠重合,則稱這些函數(shù)為“同簇函數(shù)”.給出下列函數(shù):①;②;③;④.其中“同簇函數(shù)”的是()A.①②B.①④C.②③D.③④9.如圖,在正四棱錐中,,側(cè)面積為,則它的體積為()A.4 B.8 C. D.10.若等差數(shù)列的前10項(xiàng)之和大于其前21項(xiàng)之和,則的值()A.大于0 B.等于0 C.小于0 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知內(nèi)接于拋物線,其中O為原點(diǎn),若此內(nèi)接三角形的垂心恰為拋物線的焦點(diǎn),則的外接圓方程為_____.12.用線性回歸某型求得甲、乙、丙3組不同的數(shù)據(jù)的線性關(guān)系數(shù)分別為0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一個(gè))組數(shù)據(jù)的線性關(guān)系性最強(qiáng)。13.已知圓錐的軸截面是邊長(zhǎng)為2的正三角形,則這個(gè)圓錐的表面積等于______.14.?dāng)?shù)列的前項(xiàng)和為,,且(),記,則的值是________.15.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.16.等差數(shù)列的前項(xiàng)和為,,,等比數(shù)列滿足,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前15項(xiàng)和.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖1,已知菱形的對(duì)角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.18.已知的頂點(diǎn)都在單位圓上,角的對(duì)邊分別為,且.(1)求的值;(2)若,求的面積.19.如圖,在三棱錐中,點(diǎn),分別是,的中點(diǎn),,.求證:⑴平面;⑵.20.如圖,在中,角,,的對(duì)邊分別為,,,且.(1)求的大??;(2)若,為外一點(diǎn),,,求四邊形面積的最大值.21.已知同一平面內(nèi)的三個(gè)向量、、,其中(1,2).(1)若||=2,且與的夾角為0°,求的坐標(biāo);(2)若2||=||,且2與2垂直,求在方向上的投影.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
由題意求得數(shù)列的通項(xiàng)公式為,令,解得,即可得到答案.【題目詳解】由題意,根據(jù)等差數(shù)列的性質(zhì),可得,即又由,即,所以等差數(shù)列的公差為,又由,解得,所以數(shù)列的通項(xiàng)公式為,令,解得,所以使得取得最大值時(shí)的值為8,故選D.【題目點(diǎn)撥】本題主要考查了等差數(shù)列的性質(zhì),等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和最值問(wèn)題,其中解答中熟記等差數(shù)列的性質(zhì)和通項(xiàng)公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、A【解題分析】
根據(jù)向量的夾角公式,準(zhǔn)確運(yùn)算,即可求解,得到答案.【題目詳解】由向量,則與夾角的余弦值為,故選A.【題目點(diǎn)撥】本題主要考查了向量的夾角公式的應(yīng)用,其中解答中熟記向量的夾角公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、D【解題分析】
設(shè)且,半徑為,根據(jù)題意列出方程組,求得的值,即可求解.【題目詳解】依題意,圓經(jīng)過(guò)點(diǎn),可設(shè)且,半徑為,則,解得,所以圓的方程為.【題目點(diǎn)撥】本題主要考查了圓的標(biāo)準(zhǔn)方程的求解,其中解答中熟記圓的標(biāo)準(zhǔn)方程的形式,以及合理應(yīng)用圓的性質(zhì)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4、A【解題分析】
數(shù)列是等比數(shù)列與命題是等比數(shù)列是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.【題目詳解】若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列是等比數(shù)列,若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列不是等比數(shù)列,∴數(shù)列是等比數(shù)列是數(shù)列是等比數(shù)列的充分非必要條件,故選:A.【題目點(diǎn)撥】本題主要考查充分不必要條件的判斷,注意等比數(shù)列的性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題.5、C【解題分析】
根據(jù)幾何概型概率公式直接求解可得結(jié)果.【題目詳解】由幾何概型概率公式可知,所求概率本題正確選項(xiàng):【題目點(diǎn)撥】本題考查幾何概型中的長(zhǎng)度型概率問(wèn)題的求解,屬于基礎(chǔ)題.6、D【解題分析】
結(jié)合題意,結(jié)合直線與平面垂直的判定和性質(zhì),得到兩個(gè)直角三角形,取斜邊的一半,即為外接球的半徑,結(jié)合球表面積計(jì)算公式,計(jì)算,即可.【題目詳解】過(guò)P點(diǎn)作,結(jié)合平面ABC平面PAC可知,,故,結(jié)合可知,,所以,結(jié)合所以,所以,故該外接球的半徑等于,所以球的表面積為,故選D.【題目點(diǎn)撥】考查了平面與平面垂直的性質(zhì),考查了直線與平面垂直的判定和性質(zhì),難度偏難.7、D【解題分析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯(cuò)誤,(2)正確,由上顯然有,,,,故(3)錯(cuò)誤,(4)正確.即填(2)(4).考點(diǎn):等差數(shù)列的前項(xiàng)和,等差數(shù)列與等比數(shù)列的定義.8、C【解題分析】試題分析:對(duì)于①中的函數(shù)而言,,對(duì)于③中的函數(shù)而言,,由“同簇函數(shù)”的定義而知,互為“同簇函數(shù)”的若干個(gè)函數(shù)的振幅相等,將②中的函數(shù)向左平移個(gè)單位長(zhǎng)度,得到的新函數(shù)解析式為,故選C.考點(diǎn):1.新定義;2.三角函數(shù)圖象變換9、A【解題分析】
連交于,連,根據(jù)正四棱錐的定義可得平面,取中點(diǎn),連,則由側(cè)面積和底面邊長(zhǎng),求出側(cè)面等腰三角形的高,在中,求出,即可求解.【題目詳解】連交于,連,取中點(diǎn),連因?yàn)檎睦忮F,則平面,,側(cè)面積,在中,,.故選:A.【題目點(diǎn)撥】本題考查正四棱錐結(jié)構(gòu)特征、體積和表面積,屬于基礎(chǔ)題.10、C【解題分析】
根據(jù)條件得到不等式,化簡(jiǎn)后可判斷的情況.【題目詳解】據(jù)題意:,則,所以,即,則:,故選C.【題目點(diǎn)撥】本題考查等差數(shù)列前項(xiàng)和的應(yīng)用,難度較易.等差數(shù)列前項(xiàng)和之間的關(guān)系可以轉(zhuǎn)化為與的關(guān)系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由拋物線的對(duì)稱性知A、B關(guān)于x軸對(duì)稱,設(shè)出它們的坐標(biāo),利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點(diǎn)C的坐標(biāo),問(wèn)題得以解決.【題目詳解】∵拋物線關(guān)于x軸對(duì)稱,內(nèi)接三角形的垂心恰為拋物線的焦點(diǎn),三邊上的高過(guò)焦點(diǎn),∴另兩個(gè)頂點(diǎn)A,B關(guān)于x軸對(duì)稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點(diǎn),而Ox是AB的中垂線,故C點(diǎn)即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點(diǎn)為(,),且MN∥BF,∴直線MN的方程為y(x),當(dāng)x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點(diǎn),∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【題目點(diǎn)撥】本題考查拋物線的簡(jiǎn)單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題12、乙【解題分析】由當(dāng)數(shù)據(jù)的相關(guān)系數(shù)的絕對(duì)值越趨向于,則相關(guān)性越強(qiáng)可知,因?yàn)榧?、乙、丙組不同的數(shù)據(jù)的線性相關(guān)系數(shù)分別為,所以乙線性相關(guān)系數(shù)的絕對(duì)值越接近,所以乙組數(shù)據(jù)的相關(guān)性越強(qiáng).13、【解題分析】
根據(jù)圓錐軸截面的定義結(jié)合正三角形的性質(zhì),可得圓錐底面半徑長(zhǎng)和高的大小,由此結(jié)合圓錐的表面積公式,能求出結(jié)果.【題目詳解】∵圓錐的軸截面是正三角形,邊長(zhǎng)等于2∴圓錐的高,底面半徑.∴這個(gè)圓錐的表面積:.故答案為.【題目點(diǎn)撥】本題給出圓錐軸截面的形狀,求圓錐的表面積,著重考查了等邊三角形的性質(zhì)和圓錐的軸截面等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.14、3【解題分析】
由已知條件推導(dǎo)出是首項(xiàng)為,公比為的等比數(shù)列,由此能求出的值.【題目詳解】解:因?yàn)閿?shù)列的前項(xiàng)和為,,且(),,.即,.是首項(xiàng)為,公比為的等比數(shù)列,故答案為:【題目點(diǎn)撥】本題考查數(shù)列的前項(xiàng)和的求法,解題時(shí)要注意等比數(shù)列的性質(zhì)的合理應(yīng)用,屬于中檔題.15、【解題分析】
先找出線面角,運(yùn)用余弦定理進(jìn)行求解【題目詳解】連接交于點(diǎn),取中點(diǎn),連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【題目點(diǎn)撥】本題主要考查了異面直線所成的角,考查了空間想象能力,運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.16、(1),;(2)125.【解題分析】
(1)直接利用等差數(shù)列,等比數(shù)列的公式得到答案.(2),前5項(xiàng)為正,后面為負(fù),再計(jì)算數(shù)列的前15項(xiàng)和.【題目詳解】解:(1)聯(lián)立,解得,,故,,聯(lián)立,解得,故.(2).【題目點(diǎn)撥】本題考查了等差數(shù)列,等比數(shù)列,絕對(duì)值和,判斷數(shù)列的正負(fù)分界處是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)【解題分析】
(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說(shuō)明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運(yùn)算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計(jì)算結(jié)果.【題目詳解】(Ⅰ)折疊前,因?yàn)樗倪呅螢榱庑?,所以;所以折疊后,,,又,平面,所以平面因?yàn)樗倪呅螢榱庑?,所以.又點(diǎn)為線段的中點(diǎn),所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因?yàn)槠矫?,所以平面平面.(Ⅱ)圖1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【題目點(diǎn)撥】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查了三棱錐體積的求法,運(yùn)用了轉(zhuǎn)化思想,是中檔題.18、(1);(2)【解題分析】分析:(1)由正弦定理,兩角和的正弦函數(shù)公式化簡(jiǎn)已知可得,又,即可求得的值;(2)由同角三角函數(shù)基本關(guān)系式可求的值,由于的頂點(diǎn)都在單位圓上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面積公式即可得解.詳解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因?yàn)榈捻旤c(diǎn)在單位圓上,所以,所以,由余弦定理,..點(diǎn)睛:本題主要考查了正弦定理、兩角和的正弦函數(shù)公式、同角三角函數(shù)基本關(guān)系式、余弦定理、三角形面積公式在解三角形中的應(yīng)用,熟練掌握相關(guān)公式是解題的關(guān)鍵,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.19、(1)見證明;(2)見證明【解題分析】
(1)由中位線定理即可說(shuō)明,由此證明平面;(2)首先證明平面,由線面垂直的性質(zhì)即可證明【題目詳解】證明:⑴因?yàn)樵谥校c(diǎn),分別是,的中點(diǎn)所以又因平面,平面從而平面⑵因?yàn)辄c(diǎn)是的中點(diǎn),且所以又因,平面,平面,故平面因?yàn)槠矫嫠浴绢}目點(diǎn)撥】本題考查線面平行、線面垂直的判定以及線面垂直的性質(zhì),屬于基礎(chǔ)題.20、(1)(2)【解題分析】
(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡(jiǎn),求出四邊形面積的最大值.【題目詳解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即為.(2)在中,,,由余弦定理可得,又∵,∴為等腰直角三角形,∴,∴當(dāng)時(shí),四邊形面積有最大值,最大值為.【題目點(diǎn)撥】本題主要考查余弦定理解三角形、誘導(dǎo)公式、三角形面積公式和利用三角函數(shù)求最值,考查學(xué)生的分析轉(zhuǎn)化
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年居間合同的法律規(guī)定
- 房地產(chǎn)企業(yè)勞動(dòng)合同格式模板
- 創(chuàng)業(yè)公司法律咨詢顧問(wèn)合同
- 模板公司集體合同樣本
- 2024年婚慶服務(wù)標(biāo)準(zhǔn)合同
- 房屋認(rèn)購(gòu)協(xié)議書中的物業(yè)服務(wù)條款
- 彩繪加盟合作協(xié)議書范本
- 國(guó)際貨物買賣信貸貸款契約
- 建筑安裝工程分包協(xié)議書樣本
- 農(nóng)村離婚協(xié)議書撰寫指南
- 【2022】外研版英語(yǔ)八年級(jí)上冊(cè)知識(shí)點(diǎn)總結(jié)(精華版)
- 三年級(jí)上冊(cè)數(shù)學(xué)課件-《乘火車》 北師大版 (共25張PPT)
- 勞動(dòng)法律法規(guī)培訓(xùn) 課件
- 基于綜合實(shí)踐活動(dòng)的德育校本課程開發(fā)與實(shí)施優(yōu)秀獲獎(jiǎng)科研論文
- 數(shù)字政府建設(shè)工作總結(jié)自查報(bào)告
- 中英文Bimco標(biāo)準(zhǔn)船舶管理協(xié)議--Shipman 2009
- 土木工程施工安全風(fēng)險(xiǎn)與管理措施探究
- Q∕SY JS0126-2012 清管三通擋條技術(shù)要求
- 部編版語(yǔ)文四年級(jí)上冊(cè) 《16.麻雀》課件 (共14張PPT)
- 小學(xué)語(yǔ)文人教三年級(jí)上冊(cè)第六組-2《奇妙的中心句》群文閱讀教學(xué)設(shè)計(jì)
- 保安證書表格
評(píng)論
0/150
提交評(píng)論