昆明市校際合作校2022年中考五模數(shù)學(xué)試題含解析_第1頁(yè)
昆明市校際合作校2022年中考五模數(shù)學(xué)試題含解析_第2頁(yè)
昆明市校際合作校2022年中考五模數(shù)學(xué)試題含解析_第3頁(yè)
昆明市校際合作校2022年中考五模數(shù)學(xué)試題含解析_第4頁(yè)
昆明市校際合作校2022年中考五模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷

注意事項(xiàng):

1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。

2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再

選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。

3.考試結(jié)束后,將本試卷和答題卡一并交回。

一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的

1.估計(jì)5#-J水的值應(yīng)在()

A.5和6之間B.6和7之間C.7和8之間D.8和9之間

2.如圖:A、B、C、D四點(diǎn)在一條直線上,若AB=CD,下列各式表示線段AC錯(cuò)誤的是()

????

ABCD

A.AC=AD-CDB.AC=AB+BC

C.AC=BD-ABD.AC=AD-AB

3.如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四

邊形EFGH周長(zhǎng)的最小值為()

A.56B.106C.1073D.15^/3

4.如圖,能判定EB〃AC的條件是(

A.ZC=ZABEB.ZA=ZEBD

C.ZA=ZABED.NC=NABC

5.計(jì)算4x(-9)的結(jié)果等于

A.32B.-32C.36D.-36

6.剪紙是我國(guó)傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形的是()

囁WQ9

7.將弧長(zhǎng)為2ncm、圓心角為120。的扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高是()

A.夜cmB.2^/2cmC.2&cmD.^/1()cm

8.方程好-4*+5=0根的情況是(

A.有兩個(gè)不相等的實(shí)數(shù)根B.有兩個(gè)相等的實(shí)數(shù)根

C.有一個(gè)實(shí)數(shù)根D.沒(méi)有實(shí)數(shù)根

9.體育測(cè)試中,小進(jìn)和小俊進(jìn)行800米跑測(cè)試,小進(jìn)的速度是小俊的1.25倍,小進(jìn)比小俊少用了40秒,設(shè)小俊的速

度是x米/秒,則所列方程正確的是()

800800

4xL25x—40x=800----------------=40

x2.25%

800800“、800800“、

C.---------------=40--------------=40

x1.25%1.25xx

10.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對(duì)稱圖形的卡片是()

A.85°B.75°C.60°D.30°

12.已知關(guān)于x的不等式組-1V2x+bVl的解滿足0<x<2,則b滿足的條件是()

A.0<b<2B.-3<b<-1C.-3<b<-1D.b=-1或-3

二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)

13.如圖,這是由邊長(zhǎng)為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個(gè)圖形的周長(zhǎng)是一.

14.如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B,C都不重合),現(xiàn)將△PCD沿

直線PD折疊,使點(diǎn)C落到點(diǎn)F處;過(guò)點(diǎn)P作NBPF的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能

表示y與x的函數(shù)關(guān)系的圖象大致是()

15.若方程x2+(m2-1)x+l+m=O的兩根互為相反數(shù),貝!]m=

16.分解因式:a3-12a2+36a=.

17.如圖,在正方形ABCD中,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),貝!IPB+PE的最小值是

18.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD的邊AB在x軸上,AB

的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D,處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)

C的坐標(biāo)為.

V

三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

19.(6分)如圖,二次函數(shù)y=ax?+2x+c的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3).

(1)求該二次函數(shù)的表達(dá)式;

(2)過(guò)點(diǎn)A的直線AD/7BC且交拋物線于另一點(diǎn)D,求直線AD的函數(shù)表達(dá)式;

(3)在(2)的條件下,請(qǐng)解答下列問(wèn)題:

①在x軸上是否存在一點(diǎn)P,使得以B、C,P為頂點(diǎn)的三角形與AABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,

請(qǐng)說(shuō)明理由;

②動(dòng)點(diǎn)M以每秒1個(gè)單位的速度沿線段AD從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)N以每秒,亙個(gè)單位的速度沿線段DB

5

當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),ADMN的面積最大,并求出這個(gè)最大值.

20.(6分)拋物線y=-/+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸正半軸交于點(diǎn)C.

(1)如圖1,若A(—1,0),B(3,0),

①求拋物線曠=一/+法+。的解析式;

②P為拋物線上一點(diǎn),連接AC,PC,若NPCO=3NACO,求點(diǎn)P的橫坐標(biāo);

(2)如圖2,D為x軸下方拋物線上一點(diǎn),連DA,DB,若NBDA+2NBAD=90。,求點(diǎn)D的縱坐標(biāo).

圖1圖2

21.(6分)某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:

成本銷售額

(單位:萬(wàn)元/畝)(單位:萬(wàn)元廟)

郁金香2.43

玫瑰22.5

(1)設(shè)種植郁金香X畝,兩種花卉總收益為y萬(wàn)元,求y關(guān)于X的函數(shù)關(guān)系式.(收益=銷售額-成本)

(2)若計(jì)劃投入的成本的總額不超過(guò)70萬(wàn)元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個(gè)多少畝?

22.(8分)一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“美”、“麗”、“光”、“明”的四個(gè)小球,除漢字不同之外,小球沒(méi)有

任何區(qū)別,每次摸球前先攪拌均勻再摸球.

⑴若從中任取一個(gè)球,求摸出球上的漢字剛好是“美”的概率;

(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺颍?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成“美麗”或

“光明”的概率.

23.(8分)如圖,在RtAABC中,ZACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒6cm

的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿CTA-B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒

3

(0<Z<-),連接PQ,以PQ為直徑作。O.

2

(1)當(dāng)1時(shí),求APCQ的面積;

(2)設(shè)(DO的面積為s,求s與t的函數(shù)關(guān)系式;

(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),OO與RtAABC的一邊相切,求t的值.

24.(10分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對(duì)不同口

味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖的信息解決下列問(wèn)題:

圖;扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是;若該校有60()名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒

牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

25.(10分)潘橋區(qū)教育局為了了解七年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽取了鐵一中濱河學(xué)部分七年級(jí)學(xué)生2016

-2017學(xué)年第一學(xué)期參加實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:a=%,并補(bǔ)全條形圖.在本次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

如果該區(qū)共有七年級(jí)學(xué)生約9000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于6天的學(xué)生人數(shù)大約有多少?

26.(12分)如圖,。。是A48C的外接圓,A〃為直徑,8c交。。于點(diǎn)。,交AC于點(diǎn)E,連接AO、BD.CD.

(1)求證:AO=CO;

求tanZDBC的值.

27.(12分)如圖,AC是。O的直徑,PA切。O于點(diǎn)A,點(diǎn)B是。O上的一點(diǎn),且NBAC=30。,ZAPB=60°.

(1)求證:PB是。O的切線;

(2)若。O的半徑為2,求弦AB及PA,PB的長(zhǎng).

參考答案

一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)

1、C

【解析】

先化簡(jiǎn)二次根式,合并后,再根據(jù)無(wú)理數(shù)的估計(jì)解答即可.

【詳解】

576-例=5n-2#=3#=庖,

V49<54<64,

/.7<V54<8,

:.5屈-伍的值應(yīng)在7和8之間,

故選C.

【點(diǎn)睛】

本題考查了估算無(wú)理數(shù)的大小,解決本題的關(guān)鍵是估算出無(wú)理數(shù)的大小.

2、C

【解析】

根據(jù)線段上的等量關(guān)系逐一判斷即可.

【詳解】

A、VAD-CD=AC,

二此選項(xiàng)表示正確;

B、VAB+BC=AC,

???此選項(xiàng)表示正確;

C、VAB=CD,

.?.BD-AB=BD-CD,

此選項(xiàng)表示不正確;

D、VAB=CD,

.,.AD-AB=AD-CD=AC,

二此選項(xiàng)表示正確.

故答案選:C.

【點(diǎn)睛】

本題考查了線段上兩點(diǎn)間的距離及線段的和、差的知識(shí),解題的關(guān)鍵是找出各線段間的關(guān)系.

3、B

【解析】

作點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)ES連接E'G交BC于點(diǎn)F,此時(shí)四邊形EFGH周長(zhǎng)取最小值,過(guò)點(diǎn)G作GG(±AB于點(diǎn)G',

如圖所示,

VAE=CG,BE=BE',

...E'G'=AB=10,

?.,GG'=AD=5,

22

二E-G=ylE'G'+GG'=575,

c四邊形EFGH=2E'G=10后,

故選B.

【點(diǎn)睛】本題考查了軸對(duì)稱-最短路徑問(wèn)題,矩形的性質(zhì)等,根據(jù)題意正確添加輔助線是解題的關(guān)鍵.

4、C

【解析】

在復(fù)雜的圖形中具有相等關(guān)系的兩角首先要判斷它們是否是同位角或內(nèi)錯(cuò)角,被判斷平行的兩直線是否由“三線八角”

而產(chǎn)生的被截直線.

【詳解】

A、NC=NABE不能判斷出EB〃AC,故本選項(xiàng)錯(cuò)誤;

B、NA=NEBD不能判斷出EB〃AC,故本選項(xiàng)錯(cuò)誤;

C、ZA=ZABE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可以得出EB〃AC,故本選項(xiàng)正確;

D、NC=NABC只能判斷出AB=AC,不能判斷出EB〃AC,故本選項(xiàng)錯(cuò)誤.

故選C.

【點(diǎn)睛】

本題考查了平行線的判定,正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵,只有同位角相等、

內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.

5、D

【解析】

根據(jù)有理數(shù)的乘法法則進(jìn)行計(jì)算即可.

【詳解】

4x(—9)=Yx9=—36.

故選:D.

【點(diǎn)睛】

考查有理數(shù)的乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘.

6、A

【解析】

試題分析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念可知:選項(xiàng)A既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)

正確;選項(xiàng)B不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;選項(xiàng)C既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本

選項(xiàng)錯(cuò)誤;選項(xiàng)D既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選A.

考點(diǎn):中心對(duì)稱圖形;軸對(duì)稱圖形.

7、B

【解析】

由弧長(zhǎng)公式可求解圓錐母線長(zhǎng),再由弧長(zhǎng)可求解圓錐底面半徑長(zhǎng),再運(yùn)用勾股定理即可求解圓錐的高.

【詳解】

解:設(shè)圓錐母線長(zhǎng)為Rem,則2kl20°::口,解得R=3cm;設(shè)圓錐底面半徑為rem,則27r=2仃,解得r=lcm.由勾

18()

股定理可得圓錐的高為序:=272cm.

故選擇B.

【點(diǎn)睛】

本題考查了圓錐的概念和弧長(zhǎng)的計(jì)算.

8、D

【解析】

解:Va=l,b=-4,c=5,

A=b2-4ac=(-4)2-4x1x5=-4<0,

所以原方程沒(méi)有實(shí)數(shù)根.

9、C

【解析】

先分別表示出小進(jìn)和小俊跑800米的時(shí)間,再根據(jù)小進(jìn)比小俊少用了40秒列出方程即可.

【詳解】

小進(jìn)跑800米用的時(shí)間為3-秒,小俊跑800米用的時(shí)間為陋秒,

1.25xx

;小進(jìn)比小俊少用了40秒,

年知目800800垢

方程是-----=4(),

x1.25%

故選C.

【點(diǎn)睛】

本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.

10>C

【解析】

試題分析:由中心對(duì)稱圖形的概念可知,這四個(gè)圖形中只有第三個(gè)是中心對(duì)稱圖形,故答案選C.

考點(diǎn):中心對(duì)稱圖形的概念.

11、B

【解析】

分析:先由AB〃CD,得NC=NABC=30。,CD=CE,得ND=NCED,再根據(jù)三角形內(nèi)角和定理得,

ZC+ZD+ZCED=180°,即30°+2ND=180°,從而求出ND.

詳解:VAB/7CD,

.*.ZC=ZABC=30°,

XVCD=CE,

.,.ZD=ZCED,

VZC+ZD+ZCED=180°,即30°+2ZD=180°,

.*.ZD=75O.

故選B.

點(diǎn)睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出NC再由CD=CE

得出ND=NCED,由三角形內(nèi)角和定理求出ND.

12、C

【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進(jìn)而解答即可.

【詳解】

V-l<2x+b<l

-—-i---b-<.x<——

22

?.?關(guān)于x的不等式組-lV2x+b<l的解滿足0<x<2,

解得:-3Wb“,

故選C.

【點(diǎn)睛】

此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.

二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)

13、2n+l

【解析】

觀察擺放的一系列圖形,可得到依次的周長(zhǎng)分別是3,4,5,6,7,…,從中得到規(guī)律,根據(jù)規(guī)律寫(xiě)出第n個(gè)圖形的

周長(zhǎng).

解:由已知一系列圖形觀察圖形依次的周長(zhǎng)分別是:

(1)2+1=3,

(2)2+2=4,

(3)2+3=5,

(4)2+4=6,

(5)2+5=7,

???,

所以第n個(gè)圖形的周長(zhǎng)為:2+n.

故答案為2+n.

此題考查的是圖形數(shù)字的變化類問(wèn)題,關(guān)鍵是通過(guò)觀察分析得出規(guī)律,根據(jù)規(guī)律求解.

14、C

【解析】

先證明△BPE-ACDP,再根據(jù)相似三角形對(duì)應(yīng)邊成比例列出式子變形可得.

【詳解】

由已知可知NEPD=90。,

.,.ZBPE+ZDPC=90°,

VZDPC+ZPDC=90°,

.,.ZCDP=ZBPE,

VZB=ZC=90°,

/.△BPE^ACDP,

BP:CD=BE;CP,即x:3=y:(5-x),

.—x~+5x

??y=------------(0<x<5);

3

故選C.

考點(diǎn):1.折疊問(wèn)題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.

15、-1

【解析】

2

根據(jù)“方程x+x+l+m=O的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關(guān)系,列出關(guān)于m的等式,

解之,再把m的值代入原方程,找出符合題意的m的值即可.

【詳解】

,??方程好+(加-1)*+1+機(jī)=0的兩根互為相反數(shù),

1-m2=Q,

解得:m=1或-1,

把"?=1代入原方程得:

好+2=0,

該方程無(wú)解,

;.m=l不合題意,舍去,

把m=-1代入原方程得:

/=0,

解得:Xl=X2=0,(符合題意),

."./n=-1,

故答案為-1.

【點(diǎn)睛】

本題考查了根與系數(shù)的關(guān)系,正確掌握一元二次方程兩根之和,兩個(gè)之積與系數(shù)之間的關(guān)系式解題的關(guān)鍵.若XI,X2

hc

為方程的兩個(gè)根,貝!Jxi,X2與系數(shù)的關(guān)系式:%+々=-3,

aa

16、a(a-6)2

【解析】

原式提取a,再利用完全平方公式分解即可.

【詳解】

原式=a(a?-12a+36)=a(a-6)2,

故答案為a(a-6)2

【點(diǎn)睛】

本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解題的關(guān)鍵.

17、10

【解析】

由正方形性質(zhì)的得出B、D關(guān)于AC對(duì)稱,根據(jù)兩點(diǎn)之間線段最短可知,連接DE,交AC于P,連接BP,則此時(shí)PB+PE

的值最小,進(jìn)而利用勾股定理求出即可.

如圖,連接。E,交AC于P,連接5P,則此時(shí)P3+PE的值最小.

???四邊形A3CD是正方形,

:.B、O關(guān)于AC對(duì)稱,

:.PB=PD,

:.PB+PE=PD+PE=DE.

':BE=2,AE=3BE,

.'.AE=6,AB=8,

ADE=762+82=10>

故PB+PE的最小值是10.

故答案為10.

18、(2,百)

【解析】

過(guò)C作CH_LAB,于",由題意得所以/。20=60。,40=1,4?=2,勾股定理知OZF=6,5//=4。所以CQ,

G).

故答案為(2,G).

三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

19、(1)y=-x2+2x+3;(2)尸-x-1;(3)P(。,0)或P(-4.5,0);當(dāng)時(shí),SAMDN的最大值為之.

522

【解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;

(2)在y=-x2+2x+3中,令y=0,則?X2+2X+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD/7BC,

設(shè)直線AD的解析式為y=-x+b,即可得到結(jié)論;

(3)①由BC〃AD,得至!JNDAB=NCBA,全等只要當(dāng)生=絲■或些="時(shí),△PBCsaABD,解方程組

ADABABAD

'2

),——.1+)+'得。(4,一5),求得AO=5&,A8=4,

y=-x-l

BC=3上,設(shè)P的坐標(biāo)為(x,0),代入比例式解得x=|或尸-4.5,即可得到P(|,0)或P(-4.5,0);

BF

②過(guò)點(diǎn)B作BF_LAD于F,過(guò)點(diǎn)N作NE_LAD于E,在RtAAFB中,ZBAF=45°,于是得到sin/A4F=—,求得

AB

BF=4x=2V2,BD=。26,求得sin/ADB=---=.~,由于DM-5>/2—t,DN—于是得

2BD726135

/r-\2

到sMZW=-DMNE=-(542-t\--t=--t2+s[2t=--(t2-5V2z)=-ir--+?,即可得到結(jié)果.

"22V>555522

\7

【詳解】

0=Q—2+c

⑴由題意知:L

3=c,

a=—\

解得

c=3,

...二次函數(shù)的表達(dá)式為y=-£+2x+3;

⑵在y=-―+2x+3中,令尸0,則一無(wú)2+2x+3=0,

解得:X,=-l,x2=3,

?"(3,0),

由已知條件得直線BC的解析式為尸-x+3,

,:AD〃BC,

???設(shè)直線AD的解析式為j=-x+*,

A0=1+6,

?,?直線AD的解析式為j=-x-l;

9

(3)?:BC//ADf

ZDAB=ZCBA9

???只要當(dāng):箓=器或器=等時(shí)'△網(wǎng)CS4皿

y=—尢?+2x+3

解得0(4,-5),

y=-x-l

AAD=572,AB=4,BC=372,

設(shè)P的坐標(biāo)為(x,0),

3yli3-x_p_3>/23—x

即5血一4X4一5及

,3

解得x=g或x=-4.5,

或P(-4.5,0),

②過(guò)點(diǎn)B作BFLAD于F,過(guò)點(diǎn)N作NELAD于E,

在RtAAf5中,N8AF=45°,

BF

:.sinZ.BAF=----,

AB

???BF=4X—=272,BD=V26,

2

BDV2613

77^

VDM=5y[2-t,DN=-t,

.../…NE1舊V132V132

又v?sinNAZZS=-----,NE=-----1--------=-t,

DN5135

S.DN=5DM-NE,

=一(r+"

=~—(^2-5\/2/),

if5五丫

+一5,

512J2

.?.當(dāng)f=述時(shí),S.MDN的最大值為之

22

【點(diǎn)睛】

屬于二次函數(shù)的綜合題,考查待定系數(shù)法求二次函數(shù)解析式,銳角三角形函數(shù),相似三角形的判定與性質(zhì),二次函數(shù)

的最值等,綜合性比較強(qiáng),難度較大.

35

20、(1)?y=-x2+2x+3@—(2)-1

【解析】

分析:(D①把4、8的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;

②延長(zhǎng)CP交x軸于點(diǎn)E,在x軸上取點(diǎn)。使C£)=C4,作ENJ_CZ)交CO的延長(zhǎng)線于N.*CD=CA,OC±AD,得

至)|NOCO=NACO.由NPCO=3NACO,得到NAC〃=NECD,從而有tanNACD=tanNEC。,

AIENAIEN3

——=——,即可得出A/、C/的長(zhǎng),進(jìn)而得到——=——=工設(shè)EN=3x,貝!|CN=4x,由tanNCDO=tan/EZ)N,得

CICNCICN4

到列=空=3,故設(shè)。N=X,貝!|C£>=CN-ON=3x=Ji。,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線解析式,

DNOD1

聯(lián)立解方程組即可得到結(jié)論;

(2)作。/_Lx軸,垂足為1.可以證明△由相似三角形對(duì)應(yīng)邊成比例得到絲=%

IDAl

即一^—-~,整理得yJ=x/—(z+/)尤£>+%八與?令尸0,得;—x2+Z?x+c=0-

-%XD~~XA

故XA+XB=/?,XAXB=-c,從而得到y(tǒng)j=xj-bx。-C.由y。=-xJ+Zzx0+c,得到解方程即可

得到結(jié)論.

詳解:(1)①把A(-1,0),B(3,0)代入y=-%2+0x+c得:

—l—b+c=0彷=2

,解得:

—9+3匕+c=0c-3

**?y———x?+2x+3

②延長(zhǎng)CP交x軸于點(diǎn)E,在x軸上取點(diǎn)。使C0=C4,作ENJLC。交C。的延長(zhǎng)線于M

,:CD=CA,OCA.AD,ZDCO=ZACO.

VZPCO=3ZACO,:.ZACD=ZECD,:.tanZACP=tanZECD,

AIENADxOC6

----=------,AI-

ClCNCDVio

22AIEN3

CI=\ICA-AI=

Vio~CI~~CN~4

設(shè)EN=3x,則CN=4x.

VtanZCDO=tanZEDN,

ENOC3.

-----=------——9??DN=x,:.CD=CN-DN=3x=710,

DNOD1

.?313

,E(—,0).

33

9

CE的直線解析式為:y^-—x+3,

£+3

y

9

y=-x~+2x+3

935

—x~+2尤+3=-----x+3,解得:匕=0,=—

131-13

35

點(diǎn)尸的橫坐標(biāo)一.

13

(2)作軸,垂足為1.

?:ZBDA+2NBAD=90°,:.ZDBI+ZBAD=90°.

VZBD/+ZDB/=90°,AZBAD=ZBDI.

VZB/D=ZDM,:.△EBDsADBC,

IDAI

.X。*B_-%

"-y,)XD-XA)

??J7。=XD—(XA~^XB)XD~^~XAXB?

令尸0,得:一%2+〃x+c=0.

2J

/.xA+xB=h,xAxB=-c,AyD-{<xAt-xB)xD+xAxB=xj-bxD-c.

■:yD—~xD~+bxD+c,

2

-yD=-%,

解得:yo=0或一1.

??,O為x軸下方一點(diǎn),

*,?%=-1,

???O的縱坐標(biāo)一1.

點(diǎn)睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關(guān)系.綜合

性比較強(qiáng),難度較大.

21、(1)y=0.1x+15,(2)郁金香25畝,玫瑰5畝

【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可得到y(tǒng)關(guān)于x的函數(shù);

(2)根據(jù)題意可列出相應(yīng)的不等式,再根據(jù)(1)中的函數(shù)關(guān)系式即可求解.

【詳解】

(1)由題意得丫=(3-2.4)x-(2.5-2)(30-x)=0.1x+15

即y關(guān)于x的函數(shù)關(guān)系式為y=0.1x+15

(2)由題意得2.4x+2(30-x)<70

解得x<25,

Vy=0.1x+15

?**當(dāng)x=25時(shí),y最大=17.5

30-x=5,

A要使獲得的收益最大,基地應(yīng)種植郁金香25畝和玫瑰5畝.

【點(diǎn)睛】

此題主要考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵是根據(jù)題意進(jìn)行列出關(guān)系式與不等式進(jìn)行求解.

11

22、⑴了;⑵彳,

43

【解析】

(1)一共4個(gè)小球,則任取一個(gè)球,共有4種不同結(jié)果,摸出球上的漢字剛好是“美”的概率為

4

(2)列表或畫(huà)出樹(shù)狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進(jìn)行解答即可.

【詳解】

(1)?.?“美”、“麗”、“光”、“明”的四個(gè)小球,任取一球,共有4種不同結(jié)果,

二任取一個(gè)球,摸出球上的漢字剛好是“美”的概率P=I

⑵列表如下:

美麗光明

美-???(美,麗)(光,美)(美,明)

麗(美,麗)--(光,麗)(明,麗)

光(美,光)(光,麗)——(光,明)

明(美,明)(明,麗)(光,明)....

根據(jù)表格可得:共有12中等可能的結(jié)果,其中恰能組成“美麗”或“光明”共有4種,故

取出的兩個(gè)球上的漢字恰能組成“美麗”或“光明”的概率P=;.

【點(diǎn)睛】

此題考查的是用列表法或樹(shù)狀圖法求概率與不等式的性質(zhì).注意樹(shù)狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能

的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)

之比.

23、(1)昱;(2)①物匚;②771-18R+12萬(wàn);(3)t的值為延或1或9.

244105

【解析】

(1)先根據(jù)t的值計(jì)算CQ和CP的長(zhǎng),由圖形可知APCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;

(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí);分別根據(jù)勾股定理計(jì)算PQ2,最后利用圓

的面積公式可得S與t的關(guān)系式;

(3)分別當(dāng)OO與BC相切時(shí)、當(dāng)。O與AB相切時(shí),當(dāng)OO與AC相切時(shí)三種情況分類討論即可確定答案.

【詳解】

(1)當(dāng)時(shí),CQ=4t=4x—=2,即此時(shí)Q與A重合,

22

CP=y/jt=—,

2

,:ZACB=90°,

:.SAPCQ=-CQ?PC=,x2x且=";

2222

(2)分兩種情況:

①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),0VtS2,如圖1,

由題意得:CQ=4t,CP=V3t,

由勾股定理得:PQ2=CQ2+PC2=(4t)2+(百t)2=19t2,

②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí),2Vt<4如圖2,

設(shè)。O與AB的另一個(gè)交點(diǎn)為D,連接PD,

VCP=73t,AC+AQ=4t,

:.PB=BC-PC=26-6t,BQ=2+4-4t=6-4t,

?;PQ為。O的直徑,

:.ZPDQ=90°,

RtAACB中,AC=2cm,AB=4cm,

.*.ZB=30°,

RtAPDB中,PD=-PB=2^~^Z

22

:.BD=yjPB--PD2=,

2

=3r-187+12,

(3)分三種情況:

①當(dāng)OO與AC相切時(shí),如圖3,設(shè)切點(diǎn)為E,連接OE,過(guò)Q作QFd_AC于F,

.,.OE±AC,

VAQ=4t-2,

RtAAFQ中,NAQF=30°,

.*.AF=2t-1,

.??FQ=6(2t-1),

VFQ/7OE/7PC,OQ=OP,

/.EF=CE,

.?.FQ+PC=2OE=PQ,

.?.百(2t-1)+V3t=j7?—18f+12,

解得:t=*6或-坐(舍);

1010

②當(dāng)。O與BC相切時(shí),如圖4,

此時(shí)PQ_LBC,

VBQ=6-4t,PB=26-5,

PB

.?.cos300=—,

.2y/3-y/3tV3

??------------=----9

6—4,2

t=l;

③當(dāng)OO與BA相切時(shí),如圖5,

此時(shí)PQ_LBA,

VBQ=6-4t,PB=2百-百t,

:.cos30°=,

PB

.2y/3-y/3t_2

-6-今=國(guó)'

6

5

綜上所述,t的值為述或1或9.

【點(diǎn)睛】

本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質(zhì)等知識(shí),綜合性較強(qiáng),有一定的難度,以點(diǎn)

P和Q運(yùn)動(dòng)為主線,畫(huà)出對(duì)應(yīng)的圖形是關(guān)鍵,注意數(shù)形結(jié)合的思想.

24、(1)150人;(2)補(bǔ)圖見(jiàn)解析;(3)144°;(4)300盒.

【解析】

(1)根據(jù)喜好A口味的牛奶的學(xué)生人數(shù)和所占百分比,即可求出本次調(diào)查的學(xué)生數(shù).

(2)用調(diào)查總?cè)藬?shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補(bǔ)全統(tǒng)計(jì)圖.再用360。

乘以喜好C口味的牛奶人數(shù)所占百分比求出對(duì)應(yīng)中心角度數(shù).

⑶用總?cè)藬?shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.

【詳解】

解:(1)本次調(diào)查的學(xué)生有30+20%=150人;

(2)C類別人數(shù)為150-(30+45+15)=60人,

(3)扇形統(tǒng)計(jì)圖中C對(duì)應(yīng)的中心角度數(shù)是360。

150

故答案為144°

(4)600X(45+30)=300(人),

150

答:該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約300盒.

【點(diǎn)睛】

本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論