版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
西藏日喀則區(qū)南木林高級中學2023-2024學年數(shù)學高一上期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)與的圖象關(guān)于直線對稱,則的單調(diào)遞增區(qū)間是()A. B.C. D.2.已知圓:與圓:,則兩圓公切線條數(shù)為A.1條 B.2條C.3條 D.4條3.計算:的值為A. B.C. D.4.設(shè)直三棱柱ABC-A1B1C1的體積為V,點P、Q分別在側(cè)棱AA1、CC1上,且PA=QC1,則四棱錐B-APQC的體積為()A. B.C. D.5.(南昌高三文科數(shù)學(模擬一)第9題)我國古代數(shù)學名著《九章算術(shù)》中有如下問題:今有甲乙丙三人持錢,甲語乙丙:各將公等所持錢,半以益我,錢成九十(意思是把你們兩個手上的錢各分我一半,我手上就有錢);乙復語甲丙,各將公等所持錢,半以益我,錢成七十;丙復語甲乙:各將公等所持錢,半以益我,錢成五十六,則乙手上有錢.A. B.C. D.6.如圖所示的是用斜二測畫法畫出的的直觀圖(圖中虛線分別與軸,軸平行),則原圖形的面積是()A.8 B.16C.32 D.647.《九章算術(shù)》中,稱底面為矩形且有一側(cè)棱垂直于底面的四棱錐為陽馬,如圖,某陽馬的三視圖如圖所示,則該陽馬的最長棱的長度為()A. B.C.2 D.8.已知是定義在上的奇函數(shù),且當時,,那么A. B.C. D.9.已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是A.若m⊥n,n⊥α,m?β,則α⊥βB.若α∥β,n⊥α,m⊥β,則m∥nC.若m⊥n,n?α,m?β,則α⊥βD.若α∥β,n?α,m∥β,則m∥n10.直線與直線平行,則的值為()A. B.2C. D.0二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐的底面圓直徑AB為2,母線長SA為4,若小蟲P從點A開始繞著圓錐表面爬行一圈到SA的中點C,則小蟲爬行的最短距離為________12.若函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增,則實數(shù)的取值范圍是_________13.已知,則的值為___________.14.已知函數(shù),,對任意,總存在使得成立,則實數(shù)a的取值范圍是_________.15.已知,函數(shù),若函數(shù)有兩個零點,則實數(shù)k的取值范圍是________16.設(shè)函數(shù);若方程有且僅有1個實數(shù)根,則實數(shù)b的取值范圍是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口是的中點,分別落在線段上.已知米,米,記.(1)試將污水凈化管道總長度(即的周長)表示為的函數(shù),并求出定義域;(2)問當取何值時,污水凈化效果最好?并求出此時管道的總長度.(提示:.)18.已知函數(shù)是定義在上奇函數(shù),且.(1)求,的值;(2)判斷在上的單調(diào)性,并用定義證明.19.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+20.如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為(1)求側(cè)面與底面所成的二面角的大??;(2)若是的中點,求異面直線與所成角的正切值;21.已知函數(shù)的圖象恒過定點A,且點A又在函數(shù)的圖象上.(1)求實數(shù)a的值;(2)若函數(shù)有兩個零點,求實數(shù)b的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)題意得,,進而根據(jù)復合函數(shù)的單調(diào)性求解即可.【詳解】解:因為函數(shù)與的圖象關(guān)于直線對稱,所以,,因為的解集為,即函數(shù)的定義域為由于函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,上單調(diào)遞增,所以上單調(diào)遞增,在上單調(diào)遞減.故選:C2、D【解析】求出兩圓的圓心與半徑,利用圓心距判斷兩圓外離,公切線有4條【詳解】圓C1:x2+y2﹣2x=0化為標準形式是(x﹣1)2+y2=1,圓心是C1(1,0),半徑是r1=1;圓C2:x2+y2﹣4y+3=0化為標準形式是x2+(y﹣2)2=1,圓心是C2(0,2),半徑是r2=1;則|C1C2|r1+r2,∴兩圓外離,公切線有4條故選D【點睛】本題考查了兩圓的一般方程與位置關(guān)系應用問題,是基礎(chǔ)題3、A【解析】運用指數(shù)對數(shù)運算法則.【詳解】.故選:A.【點睛】本題考查指數(shù)對數(shù)運算,是簡單題.4、C【解析】為直三棱柱,且,.故C正確考點:棱錐的體積5、B【解析】詳解】設(shè)甲乙丙各有錢,則有解得,選B.6、C【解析】由斜二測畫法知識得原圖形底和高【詳解】原圖形中,,邊上的高為,故面積為32故選:C7、B【解析】根據(jù)三視圖畫出原圖,從而計算出最長的棱長.【詳解】由三視圖可知,該幾何體如下圖所示,平面,,則所以最長的棱長為.故選:B8、C【解析】由題意得,,故,故選C考點:分段函數(shù)的應用.9、B【解析】由題意得,A中,若,則或,又,∴不成立,∴A是錯誤的;B.若,則,又,∴成立,∴B正確;C.當時,也滿足若,∴C錯誤;D.若,則或為異面直線,∴D錯誤,故選B考點:空間線面平行垂直的判定與性質(zhì).【方法點晴】本題主要考查了空間線面位置關(guān)系的判定與證明,其中熟記空間線面位置中平行與垂直的判定定理與性質(zhì)定理是解得此類問題的關(guān)鍵,著重考查了學生的空間想象能和推理能力,屬于基礎(chǔ)題,本題的解答中,可利用線面位置關(guān)系的判定定理和性質(zhì)定理判定,也可利用舉出反例的方式,判定命題的真假.10、B【解析】根據(jù)兩直線平行的條件列式可得結(jié)果.【詳解】當時,直線與直線垂直,不合題意;當時,因直線與直線平行,所以,解得.故選:B【點睛】易錯點點睛:容易忽視縱截距不等這個條件導致錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、2.【解析】分析:要求小蟲爬行的最短距離,需將圓錐的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果詳解:由題意知底面圓的直徑AB=2,故底面周長等于2π.設(shè)圓錐的側(cè)面展開后的扇形圓心角為n°,根據(jù)底面周長等于展開后扇形的弧長得2π=,解得n=90,所以展開圖中∠PSC=90°,根據(jù)勾股定理求得PC=2,所以小蟲爬行的最短距離為2.故答案為2點睛:圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決三、12、【解析】反比例函數(shù)在區(qū)間上單調(diào)遞減,要使函數(shù)在區(qū)間上單調(diào)遞減,則,還要滿足在上單調(diào)遞增,故求出結(jié)果【詳解】函數(shù)根據(jù)反比例函數(shù)的性質(zhì)可得:在區(qū)間上單調(diào)遞減要使函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在上單調(diào)遞增則,解得故實數(shù)的取值范圍是【點睛】本題主要考查了函數(shù)單調(diào)性的性質(zhì),需要注意反比例函數(shù)在每個象限內(nèi)是單調(diào)遞減的,而在定義域內(nèi)不是單調(diào)遞減的13、##【解析】根據(jù)給定條件結(jié)合二倍角的正切公式計算作答.【詳解】因,則,所以的值為.故答案為:14、【解析】根若對于任意的∈,總存在,使得g(x0)=f(x1)成立,得到函數(shù)f(x)在上值域是g(x)在上值域的子集,然后利用求函數(shù)值域之間的關(guān)系列出不等式,解此不等式組即可求得實數(shù)a的取值范圍即可【詳解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函數(shù)f(x)的值域為B=[0,4],若對于任意的∈,總存在,使得g(x0)=f(x1)成立,則函數(shù)f(x)在上值域是g(x)在上值域A的子集,即B?A①若a=0,g(x)=0,此時A={0},不滿足條件②當a≠0時,在是增函數(shù),g(x)∈[﹣+3a,],即A=[﹣+3a,],則,∴綜上,實數(shù)a的取值范圍是故答案為【點睛】本題主要考查了函數(shù)恒成立問題,以及函數(shù)的值域,同時考查了分類討論的數(shù)學思想,屬于中檔題15、【解析】由題意函數(shù)有兩個零點可得,得,令與,作出函數(shù)與的圖象如圖所示:由圖可知,函數(shù)有且只有兩個零點,則實數(shù)的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的應用,函數(shù)零點的判斷等知識,解題時要靈活應用數(shù)形結(jié)合思想16、【解析】根據(jù)分段函數(shù)的解析式作出函數(shù)圖象,將方程有且僅有1個實數(shù)根轉(zhuǎn)化為函數(shù)與直線有一個交點,然后數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象,如圖:結(jié)合圖象可得:,故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),定義域為.(2)當或時所鋪設(shè)的管道最短,為米.【解析】(1)如圖,因為都是直角三角形,故可以得到,也就是,其中.(2)可變形為,令后,則有,其中,故取的最大值米.【詳解】(1).由于,,所以,故.管道的總長度,定義域為.(2).設(shè),則,由于,所以.因為在內(nèi)單調(diào)遞減,于是當時,取的最大值米.(此時或).答:當或時所鋪設(shè)的管道最短,為米.【點睛】在三角變換中,注意之間有關(guān)系,如,,三者中知道其中一個,必定可以求出另外兩個.18、(1),;(2)證明見解析【解析】(1)根據(jù)已知條件,為奇函數(shù),利用可以求解出參數(shù)b,然后帶入到即可求解出參數(shù)a,得到函數(shù)解析式后再去驗證函數(shù)是否滿足在上的奇函數(shù)即可;(2)由第(1)問求解出的函數(shù)解析式,任取,,做差,通過因式分解判斷差值的符號,即可證得結(jié)論.【小問1詳解】由已知條件,函數(shù)是定義在上的奇函數(shù),所以,,所以,所以,檢驗,為奇函數(shù),滿足題意條件;所以,.小問2詳解】在上單調(diào)遞增,證明如下:任取,,;其中,,所以,故在上單調(diào)遞增.19、(1)sinα=(2)713【解析】(1)解方程組sin2(2)直接利用誘導公式化簡求值.【小問1詳解】解:因為tanα=-5又sin2α+所以sinα=【小問2詳解】解:sin=-20、(1)(2)【解析】(1)取中點,連結(jié)、,則是側(cè)面與底面所成的二面角,由此能求出側(cè)面與底面所成的二面角(2)連結(jié),,則是異面直線與所成角(或所成角的補角),由此能求出異面直線與所成角的正切值【詳解】解:(1)取中點,連結(jié)、,正四棱錐中,為底面正方形的中心,,,是側(cè)面與底面所成的二面角,側(cè)棱與底面所成的角的正切值為,設(shè),得,,,,,側(cè)面與底面所成的二面角為(2)為底面正方形的中心,是中點,連結(jié),,是的中點,,是異面直線與所成角(或所成角的補角),,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年新版中國發(fā)電機噴油器銅套項目可行性研究報告
- 2024-2030年撰寫:中國節(jié)能環(huán)保裝備項目風險評估報告
- 2024-2030年撰寫:中國甲基紫B行業(yè)發(fā)展趨勢及競爭調(diào)研分析報告
- 2024-2030年撰寫:中國彈力起動機項目風險評估報告
- 2024-2030年撰寫:中國型煤煤炭洗選項目風險評估報告
- 2024-2030年撰寫:中國Western印跡行業(yè)發(fā)展趨勢及競爭調(diào)研分析報告
- c語言課課程設(shè)計目的
- 2024-2030年屋頂離心風機公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年冰座公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年全球硬質(zhì)合金刀片行業(yè)應用規(guī)模及需求前景預測報告
- DB37-T 4253-2020 地熱資源勘查技術(shù)規(guī)程
- 諸暨中學提前招生選拔考試數(shù)學試卷含答案
- 高壓氧治療-PPT課件
- 研究型課程(跨學科)項目學習設(shè)計與實施案例
- 西門子s7_200PLC基本指令
- 特殊學生成長檔案記錄(精選.)
- 高速公路安全封路施工標志標牌示意圖
- 計算機科學前沿技術(shù)課心得體會
- 窗玻璃的可見光透射比.遮陽系數(shù)
- 監(jiān)理工作程序流程圖(共24頁)
- 打印機租賃服務月考核表
評論
0/150
提交評論