![2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/37/1D/wKhkGWW8OdeAMB6wAAIeRUy0O-w752.jpg)
![2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/37/1D/wKhkGWW8OdeAMB6wAAIeRUy0O-w7522.jpg)
![2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/37/1D/wKhkGWW8OdeAMB6wAAIeRUy0O-w7523.jpg)
![2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/37/1D/wKhkGWW8OdeAMB6wAAIeRUy0O-w7524.jpg)
![2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/37/1D/wKhkGWW8OdeAMB6wAAIeRUy0O-w7525.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆浙江省杭州外國語學(xué)校數(shù)學(xué)九上期末達標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,E是BC延長線上的一點,已知∠BOD=130°,則∠DCE的度數(shù)為()A.45° B.50° C.65° D.75°2.若2a=5b,則=(
)A. B. C.2 D.53.已知二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點的坐標(biāo)(x,y)的對應(yīng)值如下表所示:x…04…y…0.37-10.37…則方程ax2+bx+1.37=0的根是()A.0或4 B.或 C.1或5 D.無實根4.下列是隨機事件的是()A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球B.平行于同一條直線的兩條直線平行C.?dāng)S一枚圖釘,落地后圖釘針尖朝上D.?dāng)S一枚質(zhì)地均勻的骰子,擲出的點數(shù)是75.若一次函數(shù)的圖象不經(jīng)過第二象限,則關(guān)于的方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定6.如圖,點是線段的垂直平分線與的垂直平分線的交點,若,則的度數(shù)是()A. B. C. D.7.在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過變換后得到的圖象,則這個變換可以是()A.向左平移2個單位 B.向右平移2個單位C.向上平移2個單位 D.向下平移2個單位8.如圖所示,二次函數(shù)的圖像與軸的一個交點坐標(biāo)為,則關(guān)于的一元二次方程的解為()A. B. C. D.9.如圖,在菱形ABCD中,AB=4,按以下步驟作圖:①分別以點C和點D為圓心,大于CD的長為半徑畫弧,兩弧交于點M,N;②作直線MN,且MN恰好經(jīng)過點A,與CD交于點E,連接BE,則BE的值為()A. B.2 C.3 D.410.一次函數(shù)y=(k﹣1)x+3的圖象經(jīng)過點(﹣2,1),則k的值是()A.﹣1 B.2 C.1 D.011.如圖,在矩形中,對角線與相交于點,,垂足為點,,且,則的長為()A. B. C. D.12.方程的解是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一副含和角的三角板和拼合在一個平面上,邊與重合,.當(dāng)點從點出發(fā)沿方向滑動時,點同時從點出發(fā)沿射線方向滑動.當(dāng)點從點滑動到點時,點運動的路徑長為______.14.如圖所示的點陣中,相鄰的四個點構(gòu)成正方形,小球只在矩形內(nèi)自由滾動時,則小球停留在陰影區(qū)域的概率為___________.15.如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.16.已知△ABC∽△DEF,其中頂點A、B、C分別對應(yīng)頂點D、E、F,如果∠A=40°,∠E=60°,那么∠C=_______度.17.如圖,在中,已知依次連接的三邊中點,得,再依次連接的三邊中點得,···,則的周長為_____________________.18.如圖是一個圓錐的展開圖,如果扇形的圓心角等于90°,扇形的半徑為6cm,則圓錐底面圓的半徑是______cm.三、解答題(共78分)19.(8分)如圖,AB、CD、EF是與路燈在同一直線上的三個等高的標(biāo)桿,已知AB、CD在路燈光下的影長分別為BM、DN,在圖中作出EF的影長.20.(8分)如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點,該拋物線的頂點為C.(1)求此拋物線和直線的解析式;(2)設(shè)直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標(biāo);若不存在,請說明理由;(3)設(shè)點P是直線下方拋物線上的一動點,當(dāng)面積最大時,求點P的坐標(biāo),并求面積的最大值.21.(8分)如圖,是等邊三角形,順時針方向旋轉(zhuǎn)后能與重合.(1)旋轉(zhuǎn)中心是___________,旋轉(zhuǎn)角度是___________度,(2)連接,證明:為等邊三角形.22.(10分)如圖,在等腰直角三角形MNC中,CN=MN=,將△MNC繞點C順時針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點O.(1)∠NCO的度數(shù)為________;(2)求證:△CAM為等邊三角形;(3)連接AN,求線段AN的長.23.(10分)為了鞏固全國文明城市建設(shè)成果,突出城市品質(zhì)的提升,近年來,我市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,我市2016年的綠色建筑面積約為950萬平方米,2018年達到了1862萬平方米.若2017年、2018年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:(1)求這兩年我市推行綠色建筑面積的年平均增長率;(2)2019年我市計劃推行綠色建筑面積達到2400萬平方米.如果2019年仍保持相同的年平均增長率,請你預(yù)測2019年我市能否完成計劃目標(biāo)?24.(10分)已知:如圖,拋物線y=﹣x2+2x+3交x軸于點A、B,其中點A在點B的左邊,交y軸于點C,點P為拋物線上位于x軸上方的一點.(1)求A、B、C三點的坐標(biāo);(2)若△PAB的面積為4,求點P的坐標(biāo).25.(12分)從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.26.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C(0,﹣3),點P是直線BC下方拋物線上的任意一點。(1)求這個二次函數(shù)y=x2+bx+c的解析式。(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點P的坐標(biāo)。
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)圓周角定理求出∠A,根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠DCE=∠A,代入求出即可.【詳解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四邊形ABCD為⊙O的內(nèi)接四邊形,∴∠DCE=∠A=65°,故選:C.【點睛】本題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,注意:圓內(nèi)接四邊形的對角互補,并且一個外角等于它的內(nèi)對角.2、B【分析】逆用比例的基本性質(zhì)作答,即在比例里,兩個外項的積等于兩個內(nèi)項的積.【詳解】解:因為2a=5b,
所以a:b=5:2;所以=
故選B.【點睛】本題主要是靈活利用比例的基本性質(zhì)解決問題.3、B【分析】利用拋物線經(jīng)過點(0,0.37)得到c=0.37,根據(jù)拋物線的對稱性得到拋物線的對稱軸為直線x=2,拋物線經(jīng)過點,由于方程ax2+bx+1.37=0變形為ax2+bx+0.37=-1,則方程ax2+bx+1.37=0的根理解為函數(shù)值為-1所對應(yīng)的自變量的值,所以方程ax2+bx+1.37=0的根為.【詳解】解:由拋物線經(jīng)過點(0,0.37)得到c=0.37,
因為拋物線經(jīng)過點(0,0.37)、(4,0.37),
所以拋物線的對稱軸為直線x=2,
而拋物線經(jīng)過點所以拋物線經(jīng)過點方程ax2+bx+1.37=0變形為ax2+bx+0.37=-1,
所以方程ax2+bx+0.37=-1的根理解為函數(shù)值為-1所對應(yīng)的自變量的值,
所以方程ax2+bx+1.37=0的根為.故選:B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).4、C【分析】根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件.【詳解】A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球,是不可能事件,故不符合題意;B.平行于同一條直線的兩條直線平行,是必然事件,故不符合題意;C.擲一枚圖釘,落地后圖釘針尖朝上,是隨機事件,故符合題意;D.擲一枚質(zhì)地均勻的骰子,擲出的點數(shù)是7,是不可能事件,故不符合題意,故選C.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【分析】利用一次函數(shù)性質(zhì)得出k>0,b≤0,再判斷出△=k2-4b>0,即可求解.【詳解】解:一次函數(shù)的圖象不經(jīng)過第二象限,,,,方程有兩個不相等的實數(shù)根.故選.【點睛】本題考查的是一元二次方程的根的判別式,熟練掌握一次函數(shù)的圖像和一元二次方程根的判別式是解題的關(guān)鍵.6、D【分析】連接AD,根據(jù)想的垂直平分線的性質(zhì)得到DA=DB,DB=DC,根據(jù)等腰三角形的性質(zhì)計算即可.【詳解】解:連接AD,∵點D為線段AB與線段BC的垂直平分線的交點,∴DA=DB,DB=DC,∴設(shè)∠DAC=x°,則∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故選:D.【點睛】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.7、A【分析】將兩個二次函數(shù)均化為頂點式,根據(jù)兩頂點坐標(biāo)特征判斷平移方向和平移距離.【詳解】,頂點坐標(biāo)為,,頂點坐標(biāo)為,所以函數(shù)的圖象向左平移2個單位后得到的圖象.故選:A【點睛】本題考查二次函數(shù)圖象的特征,根據(jù)頂點坐標(biāo)確定變換方式是解答此題的關(guān)鍵.8、B【分析】先確定拋物線的對稱軸,然后根據(jù)拋物線的對稱性確定圖象與x軸的另一個交點,再根據(jù)二次函數(shù)與一元二次方程的關(guān)系解答即可.【詳解】解:∵二次函數(shù)的對稱軸是直線,圖象與軸的一個交點坐標(biāo)為,∴圖象與軸的另一個交點坐標(biāo)為(﹣1,0),∴一元二次方程的解為.故選:B.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)以及二次函數(shù)與一元二次方程的關(guān)系,屬于??碱}型,熟練掌握基本知識是解題的關(guān)鍵.9、B【解析】由作法得AE垂直平分CD,則∠AED=90°,CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EH⊥BC于H,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.【詳解】解:如圖所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四邊形ABCD為菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故選B.【點睛】本題考查了垂直平分線的性質(zhì)、菱形的性質(zhì)、解直角三角形等知識.合理構(gòu)造輔助線是解題的關(guān)鍵.10、B【分析】函數(shù)經(jīng)過點(﹣1,1),把點的坐標(biāo)代入解析式,即可求得k的值.【詳解】解:根據(jù)題意得:﹣1(k﹣1)+3=1,解得:k=1.故選B.【點睛】本題主要考查了函數(shù)的解析式與圖象的關(guān)系,滿足解析式的點一定在圖象上,圖象上的點一定滿足函數(shù)解析式.11、C【分析】由矩形的性質(zhì)得到:設(shè)利用勾股定理建立方程求解即可得到答案.【詳解】解:矩形,設(shè)則,(舍去)故選C.【點睛】本題考查的是矩形的性質(zhì),勾股定理,掌握以上知識點是解題的關(guān)鍵.12、B【解析】按照系數(shù)化1、開平方的步驟求解即可.【詳解】系數(shù)化1,得開平方,得故答案為B.【點睛】此題主要考查一元二次方程的求解,熟練掌握,即可解題.二、填空題(每題4分,共24分)13、【分析】過點D'作D'N⊥AC于點N,作D'M⊥BC于點M,由直角三角形的性質(zhì)可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可證△D'NE'≌△D'MF',可得D'N=D'M,即點D'在射線CD上移動,且當(dāng)E'D'⊥AC時,DD'值最大,則可求點D運動的路徑長,【詳解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm
如圖,當(dāng)點E沿AC方向下滑時,得△E'D'F',過點D'作D'N⊥AC于點N,作D'M⊥BC于點M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即點E沿AC方向下滑時,點D'在射線CD上移動,∴當(dāng)E'D'⊥AC時,DD'值最大,最大值=ED-CD=(12-6)cm
∴當(dāng)點E從點A滑動到點C時,點D運動的路徑長=2×(12-6)=(24-12)cm【點睛】本題考查了軌跡,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),角平分線的性質(zhì),確定點D的運動軌跡是本題的關(guān)鍵.14、【分析】分別求出矩形ABCD的面積和陰影部分的面積即可確定概率.【詳解】設(shè)每相鄰兩個點之間的距離為a則矩形ABCD的面積為而利用梯形的面積公式和圖形的對稱性可知陰影部分的面積為∴小球停留在陰影區(qū)域的概率為故答案為【點睛】本題主要考查隨機事件的概率,能夠求出陰影部分的面積是解題的關(guān)鍵.15、【分析】由旋轉(zhuǎn)的性質(zhì)可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉(zhuǎn)化為求兩個特殊三角形的面積即可.【詳解】解:連接PQ,由旋轉(zhuǎn)的性質(zhì)可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等邊三角形,∴PQ=BP,在等邊三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ與△CBP中,∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,因為,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴,故答案為:【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定、勾股定理的逆定理及特殊三角形的面積,解題的關(guān)鍵是作出輔助線,轉(zhuǎn)化為特殊三角形進行求解.16、80【解析】因為△ABC∽△DEF,所以∠A=∠D,∠B=∠E,∠C=∠F,因為∠A=40°,∠E=60°,所以∠B=60°,所以∠C=180°―40°―60°=80°,故答案為:80.17、【分析】根據(jù)三角形的中位線定理得:A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,則△A2B2C2的周長等于△A1B1C1的周長的一半,以此類推可求出△A5B5C5的周長為△A1B1C1的周長的.【詳解】解:∵A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,∴△A5B5C5的周長為△A1B1C1的周長的,∴△A5B5C5的周長為(7+4+5)×=1.故答案為1.【點睛】本題主要考查了三角形的中位線定理,靈活運用三角形的中位線定理并歸納規(guī)律是解答本題的關(guān)鍵.18、【分析】把的扇形的弧長等于圓錐底面周長作為相等關(guān)系,列方程求解.【詳解】設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得:r=cm,故答案為.【點睛】本題考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.三、解答題(共78分)19、詳見解析.【分析】連接MA并延長,連接NC并延長,兩延長線相交于一點O,點O是路燈所在的點,再連接OE,并延長OE交地面于點G,F(xiàn)G即為所求.【詳解】如圖所示,F(xiàn)G即為所求.【點睛】本題考查了中心投影:由同一點(點光源)發(fā)出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影;中心投影的光線特點是從一點出發(fā)的投射線.20、(1)拋物線的解析式為,直線的解析式為,(2)或.(3)當(dāng)時,面積的最大值是,此時P點坐標(biāo)為.【解析】(1)將、兩點坐標(biāo)分別代入二次函數(shù)的解析式和一次函數(shù)解析式即可求解;(2)先求出C點坐標(biāo)和E點坐標(biāo),則,分兩種情況討論:①若點M在x軸下方,四邊形為平行四邊形,則,②若點M在x軸上方,四邊形為平行四邊形,則,設(shè),則,可分別得到方程求出點M的坐標(biāo);(3)如圖,作軸交直線于點G,設(shè),則,可由,得到m的表達式,利用二次函數(shù)求最值問題配方即可.【詳解】解:(1)∵拋物線經(jīng)過、兩點,∴,∴,∴拋物線的解析式為,∵直線經(jīng)過、兩點,∴,解得:,∴直線的解析式為,(2)∵,∴拋物線的頂點C的坐標(biāo)為,∵軸,∴,∴,①如圖,若點M在x軸下方,四邊形為平行四邊形,則,設(shè),則,∴,∴,解得:,(舍去),∴,②如圖,若點M在x軸上方,四邊形為平行四邊形,則,設(shè),則,∴,∴,解得:,(舍去),∴,綜合可得M點的坐標(biāo)為或.(3)如圖,作軸交直線于點G,設(shè),則,∴,∴,∴當(dāng)時,面積的最大值是,此時P點坐標(biāo)為.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)求最值問題,以及二次函數(shù)與平行四邊形、三角形面積有關(guān)的問題.21、(1)B,60;(2)見解析【分析】(1)根據(jù)三角形三個頂點中沒有變動的點就是旋轉(zhuǎn)中心來判斷,再根據(jù)旋轉(zhuǎn)的性質(zhì)判斷出旋轉(zhuǎn)的角度即可;(2)先根據(jù)旋轉(zhuǎn)的性質(zhì)得出和即可證明.【詳解】解:(1)旋轉(zhuǎn)中心是,旋轉(zhuǎn)角度是度;(2)證明:是等邊三角形,,旋轉(zhuǎn)角是;,又,是等邊三角形.【點睛】本題主要考察正三角形的判定及性質(zhì)、圖形的旋轉(zhuǎn)性質(zhì),熟練掌握性質(zhì)是關(guān)鍵.22、(1)15°;(2)證明見解析;(3)【解析】分析:(1)由旋轉(zhuǎn)可得∠ACM=60°,再根據(jù)等腰直角三角形MNC中,∠MCN=45°,運用角的和差關(guān)系進行計算即可得到∠NCO的度數(shù);(2)根據(jù)有一個角是60°的等腰三角形是等邊三角形進行證明即可;(3)根據(jù)△MNC是等腰直角三角形,△ACM是等邊三角形,判定△ACN≌△AMN,再根據(jù)Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,即可得到AN=AD﹣ND=﹣1.詳解:(1)由旋轉(zhuǎn)可得∠ACM=60°.又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;故答案為15°;(2)∵∠ACM=60°,CM=CA,∴△CAM為等邊三角形;(3)連接AN并延長,交CM于D.∵△MNC是等腰直角三角形,△ACM是等邊三角形,∴NC=NM=,CM=2,AC=AM=2.在△ACN和△AMN中,∵,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=CM=1,∴Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,∴AN=AD﹣ND=﹣1.點睛:本題主要考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定以及全等三角形的判定與性質(zhì)的運用,解題時注意:有一個角是60°的等腰三角形是等邊三角形.解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形.23、(1)這兩年我市推行綠色建筑面積的年平均增長率為40%;(2)如果2019年仍保持相同的年平均增長率,2019年我市能完成計劃目標(biāo).【分析】(1)設(shè)這兩年我市推行綠色建筑面積的年平均增長率x,根據(jù)2016年的綠色建筑面積約為950萬平方米和2018年達到了1862萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預(yù)測2019年綠色建筑面積,再與計劃推行綠色建筑面積達到2400萬平方米進行比較,即可得出答案.【詳解】(1)設(shè)這兩年我市推行綠色建筑面積的年平均增長率為x,則有950(1+x)2=1862,解得,x1=0.4,x2=?2.4(舍去),即這兩年我市推行綠色建筑面積的年平均增長率為40%;(2)由題意可得,1862×(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成計劃目標(biāo),即如果2019年仍保持相同的年平均增長率,2019年我市能完成計劃目標(biāo).【點睛】本題考查了一元二次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件和增長率問題的數(shù)量關(guān)系,列出方程進行求解.24、(1)A(﹣1,0),B(3,0),C(0,3);(2)P點坐標(biāo)為(1﹣,2),(1+,2)【分析】(1)當(dāng)時,可求點A,點B坐標(biāo),當(dāng),可求點C坐標(biāo);(2)設(shè)點P的縱坐標(biāo)為,利用三角形面積公式可求得,代入y=﹣x2+2x+3即可求得點P的橫坐標(biāo),從而求得答案.【詳解】(1)對于拋物線y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得:x1=﹣1,x2=3,則A(﹣1,0),B(3,0),令,得到y(tǒng)=﹣x2+2x+3=3,則C點坐標(biāo)為(0,3);故答案為:A(﹣1,0),B(3,0),(0,3);(2)設(shè)點P的縱坐標(biāo)為,∵點P為拋物線上位于x軸上方,∴,∵△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶節(jié)團建主題活動方案
- ktv國慶節(jié)的朋友圈活動方案
- 2024-2025學(xué)年新教材高中語文 第三單元 7.1 青蒿素:人類征服疾病的一小步(1)說課稿 部編版必修下冊
- 2024-2025學(xué)年高中語文 第二單元 七 仁義禮智我固有之說課稿5 新人教版選修《先秦諸子選讀》
- 2025變更勞動合同范文
- 2025智能化施工合同
- Unit 12 Weather(說課稿)-2024-2025學(xué)年滬教牛津版(深圳用)英語四年級上冊
- 門診手術(shù)策劃方案
- 出資比例 英語合同范例
- 云杉買賣合同范例
- 2025年華能新能源股份有限公司招聘筆試參考題庫含答案解析
- 《中國心力衰竭診斷和治療指南(2024)》解讀完整版
- 《檔案管理課件》課件
- 2024年度中國共產(chǎn)主義共青團團課課件版
- 2025年中考物理終極押題猜想(新疆卷)(全解全析)
- 脛骨骨折的護理查房
- 房顫手術(shù)后護理流程
- 抽水蓄能電站項目建設(shè)管理方案
- 北郵工程數(shù)學(xué)期末試卷B卷
- 超長結(jié)構(gòu)及大體積混凝土專項施工方案
- 初中 初一 數(shù)學(xué) 絕對值 課件
評論
0/150
提交評論