2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題含解析_第1頁
2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題含解析_第2頁
2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題含解析_第3頁
2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題含解析_第4頁
2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省東莞市北京師范大學(xué)石竹附屬學(xué)校數(shù)學(xué)高二第二學(xué)期期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用反證法證明命題“若,則全為”,其反設(shè)正確的是()A.至少有一個不為 B.至少有一個為C.全不為 D.中只有一個為2.已知,則“”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件3.如圖梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F(xiàn)分別是AB,CD的中點,將四邊形ADFE沿直線EF進行翻折,給出四個結(jié)論:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.則在翻折過程中,可能成立的結(jié)論的個數(shù)為()A.1 B.2 C.3 D.44.歐拉公式(為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù)集,建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占有非常重要的地位,被譽為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式可知,表示的復(fù)數(shù)的虛部為()A. B. C. D.5.設(shè)定點,動圓過點且與直線相切.則動圓圓心的軌跡方程為()A. B. C. D.6.用反證法證明命題“已知函數(shù)在上單調(diào),則在上至多有一個零點”時,要做的假設(shè)是()A.在上沒有零點 B.在上至少有一個零點C.在上恰好有兩個零點 D.在上至少有兩個零點7.若,則“成等比數(shù)列”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件8.已知,是兩條不同直線,,是兩個不同平面,則下列命題正確的是()(A)若,垂直于同一平面,則與平行(B)若,平行于同一平面,則與平行(C)若,不平行,則在內(nèi)不存在與平行的直線(D)若,不平行,則與不可能垂直于同一平面9.已知隨機變量服從正態(tài)分布,且,則()A.0.6826 B.0.1587 C.0.1588 D.0.341310.為直線,為平面,則下列命題中為真命題的是()A.若,,則 B.則,,則C.若,,則 D.則,,則11.若,滿足約束條件,則的最大值為()A.-2 B.-1 C.2 D.412.是雙曲線的右焦點,過點向的一條漸近線引垂線,垂足為,交另一條漸近線于點,若,則的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若命題:是真命題,則實數(shù)的取值范圍是______.14.的展開式中常數(shù)項為__________.(有數(shù)字填寫答案)15.現(xiàn)有3位男學(xué)生3位女學(xué)生排成一排照相,若男學(xué)生站兩端,3位女學(xué)生中有且只有兩位相鄰,則不同的排法種數(shù)是_____.(用數(shù)字作答)16.設(shè)等差數(shù)列的前項和為,則成等差數(shù)列.類比以上結(jié)論有:設(shè)等比數(shù)列的前項積為,則,__________,成等比數(shù)列.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知時,函數(shù),對任意實數(shù)都有,且,當(dāng)時,(1)判斷的奇偶性;(2)判斷在上的單調(diào)性,并給出證明;(3)若且,求的取值范圍.18.(12分)畢業(yè)季有位好友欲合影留念,現(xiàn)排成一排,如果:(1)、兩人不排在一起,有幾種排法?(2)、兩人必須排在一起,有幾種排法?(3)不在排頭,不在排尾,有幾種排法?19.(12分)已知.(1)求函數(shù)的單調(diào)遞增區(qū)間與對稱軸方程;(2)當(dāng)時,求的最大值與最小值.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,若恒成立,求的取值范圍.21.(12分)如圖幾何體中,底面為正方形,平面,,且.(1)求證:平面;(2)求與平面所成角的大小.22.(10分)我校為了解學(xué)生喜歡通用技術(shù)課程“機器人制作”是否與學(xué)生性別有關(guān),采用簡單隨機抽樣的辦法在我校高一年級抽出一個有60人的班級進行問卷調(diào)查,得到如下的列聯(lián)表:喜歡不喜歡合計男生18女生6合計60已知從該班隨機抽取1人為喜歡的概率是.(Ⅰ)請完成上面的列聯(lián)表;(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請說明理由.參考臨界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828參考公式:其中

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】由反證法的定義:證明命題“若,則全為”,其反設(shè)為至少有一個不為.本題選擇A選項.2、A【解題分析】

“a>1”?“”,“”?“a>1或a<0”,由此能求出結(jié)果.【題目詳解】a∈R,則“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要條件.故選A.【題目點撥】充分、必要條件的三種判斷方法.1.定義法:直接判斷“若則”、“若則”的真假.并注意和圖示相結(jié)合,例如“?”為真,則是的充分條件.2.等價法:利用?與非?非,?與非?非,?與非?非的等價關(guān)系,對于條件或結(jié)論是否定式的命題,一般運用等價法.3.集合法:若?,則是的充分條件或是的必要條件;若=,則是的充要條件.3、B【解題分析】分析:利用空間中線線、線面、面面間的位置關(guān)系求解.詳解:對于①:因為BC∥AD,AD與DF相交不垂直,所以BC與DF不垂直,則①錯誤;對于②:設(shè)點D在平面BCF上的射影為點P,當(dāng)BP⊥CF時就有BD⊥FC,而AD:BC:AB=2:3:4可使條件滿足,所以②正確;對于③:當(dāng)點P落在BF上時,DP?平面BDF,從而平面BDF⊥平面BCF,所以③正確;對于④:因為點D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④錯誤.故選B.點睛:本題考查命題真假的判斷,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).4、C【解題分析】

先由題意得到,進而可求出結(jié)果.【題目詳解】由題意可得:,所以虛部為.故選C【題目點撥】本題主要考查復(fù)數(shù)的應(yīng)用,熟記復(fù)數(shù)的概念即可,屬于常考題型.5、A【解題分析】

由題意,動圓圓心的軌跡是以為焦點的拋物線,求得,即可得到答案.【題目詳解】由題意知,動圓圓心到定點與到定直線的距離相等,所以動圓圓心的軌跡是以為焦點的拋物線,則方程為故選A【題目點撥】本題考查拋物線的定義,屬于簡單題.6、D【解題分析】分析:利用反證法證明,假設(shè)一定是原命題的完全否定,從而可得結(jié)果.詳解:因為“至多有一個”的否定是“至少有兩個”,所以用反證法證明命題“已知函數(shù)在上單調(diào),則在上至多有一個零點”時,要做的假設(shè)是在上至少有兩個零點,故選D.點睛:反證法的適用范圍是,(1)否定性命題;(2)結(jié)論涉及“至多”、“至少”、“無限”、“唯一”等詞語的命題;(3)命題成立非常明顯,直接證明所用的理論較少,且不容易證明,而其逆否命題非常容易證明;(4)要討論的情況很復(fù)雜,而反面情況較少.7、B【解題分析】分析:根據(jù)等比數(shù)列的定義和等比數(shù)列的性質(zhì),即可判定得到結(jié)論.詳解:由題意得,例如,此時構(gòu)成等比數(shù)列,而不成立,反之當(dāng)時,若,則,所以構(gòu)成等比數(shù)列,所以當(dāng)時,構(gòu)成等比數(shù)列是構(gòu)成的等比數(shù)列的必要不充分條件,故選B.點睛:本題主要考查了等比數(shù)列的定義和等比數(shù)列的性質(zhì),其中熟記等比數(shù)列的性質(zhì)和等比數(shù)列的定義的應(yīng)用是解答的關(guān)鍵,著重考查了推理與論證能力.8、D【解題分析】由,若,垂直于同一平面,則,可以相交、平行,故不正確;由,若,平行于同一平面,則,可以平行、重合、相交、異面,故不正確;由,若,不平行,但平面內(nèi)會存在平行于的直線,如平面中平行于,交線的直線;由項,其逆否命題為“若與垂直于同一平面,則,平行”是真命題,故項正確.所以選D.考點:1.直線、平面的垂直、平行判定定理以及性質(zhì)定理的應(yīng)用.9、D【解題分析】分析:根據(jù)隨機變量符合正態(tài)分布,知這組數(shù)據(jù)是以為對稱軸的,根據(jù)所給的區(qū)間的概率與要求的區(qū)間的概率之間的關(guān)系,單獨要求的概率的值.詳解:∵機變量服從正態(tài)分布,,

,

∴.故選:D.點睛:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查根據(jù)正態(tài)曲線的性質(zhì)求某一個區(qū)間的概率,屬基礎(chǔ)題.10、B【解題分析】

根據(jù)空間中平面和直線平行和垂直的位置關(guān)系可依次通過反例排除,從而得到結(jié)果.【題目詳解】選項:若,則與未必平行,錯誤選項:垂直于同一平面的兩條直線互相平行,正確選項:垂直于同一平面的兩個平面可能相交也可能平行,錯誤選項:可能與平行或相交,錯誤本題正確選項:【題目點撥】本題考查空間中直線與直線、直線與平面、平面與平面位置關(guān)系的相關(guān)命題的判定,通常通過反例,采用排除法的方式來得到結(jié)果,屬于基礎(chǔ)題.11、C【解題分析】分析:要先根據(jù)約束條件畫出可行域,再轉(zhuǎn)化目標(biāo)函數(shù),把求目標(biāo)函數(shù)的最值問題轉(zhuǎn)化成求截距的最值問題詳解:如圖所示可行域:,故目標(biāo)函數(shù)在點(2,0)處取得最大值,故最大值為2,故選C.點睛:本題考查線性規(guī)劃,須準(zhǔn)確畫出可行域.還要注意目標(biāo)函數(shù)的圖象與可行域邊界直線的傾斜程度(斜率的大小).屬簡單題12、A【解題分析】試題分析:由題意得,因此,選A.考點:雙曲線離心率【名師點睛】求雙曲線的離心率(取值范圍)的策略求雙曲線離心率是一個熱點問題.若求離心率的值,需根據(jù)條件轉(zhuǎn)化為關(guān)于a,b,c的方程求解,若求離心率的取值范圍,需轉(zhuǎn)化為關(guān)于a,b,c的不等式求解,正確把握c2=a2+b2的應(yīng)用及e>1是求解的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】試題分析:命題:“對,”是真命題.當(dāng)時,則有;當(dāng)時,則有且,解得.綜上所示,實數(shù)的取值范圍是.考點:1.全稱命題;2.不等式恒成立14、16【解題分析】展開式的次項與形成常數(shù)項,展開式的常數(shù)項和1形成常數(shù)項,所以展開式的次項為,常數(shù)項為1,所以的展開式中常數(shù)項為15+1=1615、72【解題分析】

對6個位置進行編號,第一步,兩端排男生;第二步,2,3或4,5排兩名女生,則剩下位置的排法是固定的.【題目詳解】第一步:兩端排男生共,第二步:2,3或4,5排兩名女生共,由乘法分步原理得:不同的排法種數(shù)是.【題目點撥】本題若沒有注意2位相鄰女生的順序,易出現(xiàn)錯誤答案.16、【解題分析】由于等差數(shù)列的特征是差,等比數(shù)列的特征是比,因此運用類比推理的思維方法可得:,,成等比數(shù)列,應(yīng)填答案。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)偶函數(shù).(2)見解析.(3).【解題分析】

(1)利用賦值法得到,即得函數(shù)的奇偶性.(2)利用函數(shù)單調(diào)性的定義嚴(yán)格證明.(3)先求出,再解不等式.【題目詳解】(1)令,則,,為偶函數(shù).(2)設(shè),,∵時,,∴,∴,故在上是增函數(shù).(3)∵,又∴∵,∴,即,又故.【題目點撥】(1)本題主要考查抽象函數(shù)的單調(diào)性、奇偶性的證明,考查函數(shù)的圖像和性質(zhì)的運用,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)用定義法判斷函數(shù)的單調(diào)性的一般步驟:①取值,設(shè),且;②作差,求;③變形(合并同類項、通分、分解因式、配方等);④判斷的正負(fù)符號;⑤根據(jù)函數(shù)單調(diào)性的定義下結(jié)論.18、(1);(2);(3).【解題分析】

(1)利用插空法可求出排法種數(shù);(2)利用捆綁法可求出排法種數(shù);(3)分兩種情況討論:①若在排尾;②若不在排尾.分別求出每一種情況的排法種數(shù),由加法原理計算可得出答案.【題目詳解】(1)將、插入到其余人所形成的個空中,因此,排法種數(shù)為;(2)將、兩人捆綁在一起看作一個復(fù)合元素和其他人去安排,因此,排法種數(shù)為;(3)分以下兩種情況討論:①若在排尾,則剩下的人全排列,故有種排法;②若不在排尾,則有個位置可選,有個位置可選,將剩下的人全排列,安排在其它個位置即可,此時,共有種排法.綜上所述,共有種不同的排法種數(shù).【題目點撥】本題考查了排列、組合的應(yīng)用,同時也考查了插空法、捆綁法以及分類計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.19、(1)單調(diào)遞增區(qū)間為,k∈Z.對稱軸方程為,其中k∈Z.(2)f(x)的最大值為2,最小值為–1.【解題分析】(1)因為,由,求得,k∈Z,可得函數(shù)f(x)的單調(diào)遞增區(qū)間為,k∈Z.由,求得,k∈Z.故f(x)的對稱軸方程為,其中k∈Z.(2)因為,所以,故有,故當(dāng)即x=0時,f(x)的最小值為–1,當(dāng)即時,f(x)的最大值為2.20、(1)見解析(2)【解題分析】

(1)先求得函數(shù)的導(dǎo)函數(shù),然后根據(jù)三種情況,討論的單調(diào)性.(2)由題可知在上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究的單調(diào)性和最值,對分成兩種進行分類討論,根據(jù)在上恒成立,求得的取值范圍.【題目詳解】(1),當(dāng)時,令,得,令,得或,所以在上單調(diào)遞增,在上單調(diào)遞減.當(dāng)時,在上單調(diào)遞增.當(dāng)時,令,得,令,得或,所以在上單調(diào)遞減,在上單調(diào)遞增.(2)由題可知在上恒成立,令,則,令,則,所以在上為減函數(shù),.當(dāng)時,,即在上為減函數(shù),則,所以,即,得.當(dāng)時,令,若,則,所以,所以,又,所以在上有唯一零點,設(shè)為,在上,,即單調(diào)遞增,在上,,即單調(diào)遞減,則的最大值為,所以恒成立.由,得,則.因為,所以,由,得.記,則,所以在上是減函數(shù),故.綜上,的取值范圍為.【題目點撥】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論