版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年山西省呂梁市孝義市高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,則的一條對(duì)稱軸是()A. B. C. D.2.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有蒲生一日,長(zhǎng)三尺莞生一日,長(zhǎng)一尺蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)倍?”意思是:“今有蒲草第天長(zhǎng)高尺,蕪草第天長(zhǎng)高尺以后,蒲草每天長(zhǎng)高前一天的一半,蕪草每天長(zhǎng)高前一天的倍.問(wèn)第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長(zhǎng)所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.3.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.4.已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)是的一條漸近線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),以為直徑的圓過(guò)且交的左支于兩點(diǎn),若,的面積為8,則的漸近線方程為()A. B.C. D.5.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或6.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.7.已知向量,則向量在向量方向上的投影為()A. B. C. D.8.已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說(shuō)法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則9.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.10.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.11.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.412.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為__________.14.如圖,某地一天從時(shí)的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.15.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.16.已知二項(xiàng)式ax-1x6的展開式中的常數(shù)項(xiàng)為-160三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)已知函數(shù),為實(shí)數(shù),且.(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對(duì)數(shù)的底數(shù)).20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無(wú)解,求實(shí)數(shù)的取值范圍.21.(12分)已知在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin22.(10分)已知橢圓的短軸長(zhǎng)為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過(guò)作夾角為的兩條直線分別交橢圓于和,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由題,得,由的圖象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因?yàn)楫?dāng)時(shí),,由此即可得到本題答案.【詳解】由題,得,因?yàn)榈膱D象與直線的兩個(gè)相鄰交點(diǎn)的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時(shí),,所以是函數(shù)的一條對(duì)稱軸,故選:D【點(diǎn)睛】本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對(duì)稱性.2、C【解析】
由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長(zhǎng)度,進(jìn)而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長(zhǎng)度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.3、A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項(xiàng)
故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.4、B【解析】
由雙曲線的對(duì)稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個(gè)焦點(diǎn)為,由雙曲線的對(duì)稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計(jì)算能力,屬于中檔題.5、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.6、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.7、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.8、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確.故選:.【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.9、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問(wèn)題,屬于基礎(chǔ)題10、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡(jiǎn),然后用模長(zhǎng)公式求模長(zhǎng).【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.11、B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.12、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.14、,【解析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點(diǎn)代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時(shí)是函數(shù)的半個(gè)周期,則,.又,,得,取,所以,.故答案為:,.【點(diǎn)睛】本題考查由圖象求函數(shù)解析式,考查計(jì)算能力,屬于中等題.15、C【解析】
根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.16、2【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對(duì)任意恒成立,即時(shí),,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過(guò)代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方程為,,解得.(2)記,整理得,由題知,對(duì)任意恒成立,對(duì)任意恒成立,即時(shí),,,解得,當(dāng)時(shí),對(duì)任意,,,,,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),,當(dāng)時(shí),,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因?yàn)锳B⊥AD,,所以.又因?yàn)槠矫鍭BC,平面ABC,所以EF∥平面ABC.(2)因?yàn)槠矫鍭BD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因?yàn)槠矫?,所?又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因?yàn)锳C平面ABC,所以AD⊥AC.點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無(wú)極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時(shí),,在上單調(diào)遞增,即函數(shù)的值域?yàn)?;?dāng)時(shí),,在上單調(diào)遞減,即函數(shù)的值域?yàn)?;?dāng)時(shí),易得時(shí),,在上單調(diào)遞增,時(shí),,在上單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最大值,最小值為,中最小的,當(dāng)時(shí),,最小值;當(dāng),,最小值;綜上,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域,當(dāng)時(shí),函數(shù)的值域?yàn)?,?dāng)時(shí),函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學(xué)生的運(yùn)算求解能力,體現(xiàn)了分類討論的數(shù)學(xué)思想.20、(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當(dāng)時(shí),,此時(shí)不等式無(wú)解;當(dāng)時(shí),,由得;當(dāng)時(shí),,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時(shí),;當(dāng)時(shí),,所以當(dāng)時(shí),,由得或,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法、不等式恒成立問(wèn)題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.21、(1)b=32【解析】試題分析:(1)本問(wèn)考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據(jù)余弦定理將cosB,cosC分別用邊表示,再根據(jù)正弦定理可以將sinAsinC轉(zhuǎn)化為ac,于是可以求出b的值;(2)首先根據(jù)sinB+3cosB=2求出角B的值,根據(jù)第(1)問(wèn)得到的b值,可以運(yùn)用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉(zhuǎn)化為2RsinA+2R試題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀少版八年級(jí)生物上冊(cè)第三單元第一節(jié)光合作用的產(chǎn)物課件
- 家具店外墻翻新膩?zhàn)邮┕f(xié)議
- 城市安全錨索施工協(xié)議
- 模具合作風(fēng)險(xiǎn)合同樣本
- 假山音樂廳景觀施工合同
- 文化藝術(shù)資金管理臨時(shí)規(guī)定
- 信息科技服務(wù)貸款保證政策
- 城市公園設(shè)施建設(shè)室外施工合同
- 高壓氧科室安全操作指南
- 中國(guó)科技部合同范本操作要點(diǎn)
- 消防設(shè)施操作員報(bào)名工作證明(操作員)
- 2024下半年四川省廣元市直屬事業(yè)單位招聘104人歷年公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
- 市政道路施工工程重難點(diǎn)分析及對(duì)策
- 素描教案之素描基礎(chǔ)
- 2024-2030年中國(guó)絲苗米行業(yè)發(fā)展趨勢(shì)及發(fā)展前景研究報(bào)告
- 外國(guó)新聞傳播史 課件 第十九章 非洲其他代表性國(guó)家的新聞傳播事業(yè)
- JTJ034-2000 公路路面基層施工技術(shù)規(guī)范
- 《現(xiàn)代控制理論》課程教學(xué)大綱
- 《娛樂場(chǎng)所管理?xiàng)l例》課件
- 渣土車掛靠合同
- 特殊兒童心理輔導(dǎo)理論與實(shí)務(wù) 課件 第4、5章 特殊兒童心理輔導(dǎo)與治療的基本方法、特殊兒童常見的心理行為問(wèn)題及輔導(dǎo)
評(píng)論
0/150
提交評(píng)論