版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濰坊市三年(2020-2022)中考數(shù)學(xué)真題分類匯編-03解答
題知識(shí)點(diǎn)分類
一.分式的化簡(jiǎn)求值(共1小題)
1.(2020?濰坊)先化簡(jiǎn),再求值:—)+2二3,其中x是16的算術(shù)平方根.
x-2x+lx-1
反比例函數(shù)與一次函數(shù)的交點(diǎn)問題(共1小題)
2.(2021?濰坊)(1)計(jì)算:(-2021)°+3A/27+(1-3'2X18);
22
(2)先化簡(jiǎn),再求值:x-y(x-y)(2x+3y)一孫(2+3),其中(x,y)是
x2-2xy+y2x+yxy
函數(shù)y=2x與y=2的圖象的交點(diǎn)坐標(biāo).
x
三.反比例函數(shù)的應(yīng)用(共1小題)
3.(2021?濰坊)某山村經(jīng)過脫貧攻堅(jiān)和鄉(xiāng)村振興,經(jīng)濟(jì)收入持續(xù)增長(zhǎng).經(jīng)統(tǒng)計(jì),近五年該
村甲農(nóng)戶年度純收入如表所示:
年度(年)201620172018201920202021
年度純收1.52.54.57.511.3
入(萬元)
若記2016年度為第1年,在直角坐標(biāo)系中用點(diǎn)(1,1.5),(2,2.5),(3,4.5),(4,7.5),
(5,11.3)表示近五年甲農(nóng)戶純收入的年度變化情況.如圖所示,擬用下列三個(gè)函數(shù)模
擬甲農(nóng)戶從2016年開始的年度純收入變化趨勢(shì):丫=旦(m>0),y=kx+b(k>0),y=
X
ax1-0.5x+c(a>0),以便估算甲農(nóng)戶2021年度的純收入.
(1)能否選用函數(shù)丫=典(〃?>0)進(jìn)行模擬,請(qǐng)說明理由:
x
(2)你認(rèn)為選用哪個(gè)函數(shù)模擬最合理,請(qǐng)說明理由;
(3)甲農(nóng)戶準(zhǔn)備在2021年底購(gòu)買一臺(tái)價(jià)值16萬元的農(nóng)機(jī)設(shè)備,根據(jù)(2)中你選擇的
函數(shù)表達(dá)式,預(yù)測(cè)甲農(nóng)戶2021年度的純收入能否滿足購(gòu)買農(nóng)機(jī)設(shè)備的資金需求.
4力萬元
12
11
10
9
8
1(4,;7.5)
7
6
4
3
f(2,!2.5;)
2?i,:F:!::
1
123456789x/年度
四.二次函數(shù)的應(yīng)用(共2小題)
4.(2022?濰坊)某市在鹽堿地種植海水稻獲得突破性進(jìn)展,小亮和小瑩到海水稻種植基地
調(diào)研.小瑩根據(jù)水稻年產(chǎn)量數(shù)據(jù),分別在直角坐標(biāo)系中描出表示2017-2021年①號(hào)田和
②號(hào)田年產(chǎn)量情況的點(diǎn)(記2017年為第1年度,橫軸表示年度,縱軸表示年產(chǎn)量),如
圖.
近5年①號(hào)田年產(chǎn)量近5年②號(hào)田年產(chǎn)量
粒/噸.y/噸
4-?(5,35)4-(4,3.4)
?(5,3.5)
3-?(4,3.0)3-?(3,3.1)
.?(3,2.5)*(2,2.6)
2一.?(2,2.0)2-*1,1.9)
1-(1,1.5)1-
I111I.______IIIII.
O12345"會(huì)O12345工/年度
小亮認(rèn)為,可以從匕(氏>0),(/n>0),y=-0.\x^+ax+c中選擇適當(dāng)?shù)暮瘮?shù)
x
模型,模擬①號(hào)田和②號(hào)田的年產(chǎn)量變化趨勢(shì).
(1)小瑩認(rèn)為不能選y=@(機(jī)>0).你認(rèn)同嗎?請(qǐng)說明理由;
x
(2)請(qǐng)從小亮提供的函數(shù)模型中,選擇適當(dāng)?shù)哪P头謩e模擬①號(hào)田和②號(hào)田的年產(chǎn)量變
化趨勢(shì),并求出函數(shù)表達(dá)式;
(3)根據(jù)(2)中你選擇的函數(shù)模型,請(qǐng)預(yù)測(cè)①號(hào)田和②號(hào)田總年產(chǎn)量在哪一年最大?
最大是多少?
5.(2020?濰坊)因疫情防控需要,消毒用品需求量增加.某藥店新進(jìn)一批桶裝消毒液,每
桶進(jìn)價(jià)50元,每天銷售量y(桶)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,其圖象
如圖所示.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)每桶消毒液的銷售價(jià)定為多少元時(shí),藥店每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
(利潤(rùn)=銷售價(jià)-進(jìn)價(jià))
八y(桶)
loo......X
80.......
oeo7o―蒜)
五.二次函數(shù)綜合題(共3小題)
6.(2022?濰坊)為落實(shí)“雙減”,老師布置了一項(xiàng)這樣的課后作業(yè):
二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-1),且不經(jīng)過第一象限,寫出滿足這些條件的一個(gè)函數(shù)
表達(dá)式.
【觀察發(fā)現(xiàn)】
請(qǐng)完成作業(yè),并在直角坐標(biāo)系中畫出大致圖象.
【思考交流】
小亮說:''滿足條件的函數(shù)圖象的對(duì)稱軸一定在y軸的左側(cè).”
小瑩說:“滿足條件的函數(shù)圖象一定在x軸的下方
你認(rèn)同他們的說法嗎?若不認(rèn)同,請(qǐng)舉例說明.
【概括表達(dá)】
小博士認(rèn)為這個(gè)作業(yè)的答案太多,老師不方便批閱,于是探究了二次函數(shù)y=ax2+fec+c
的圖象與系數(shù)a,6,c?的關(guān)系,得出了提高老師作業(yè)批閱效率的方法.
請(qǐng)你探究這個(gè)方法,寫出探究過程.
yt
1:??
12??
11??
11??
?1??
一」_____11
1??
11??
11??
11??
小2二10i2左
1?11
1?11
11
'(T,T)?i
1??
11??
11??
11—2??
1???
1???
1???
___1_L
1?—311
1?11
7.(2021?濰坊)如圖,在直角坐標(biāo)系中,。為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)為“(2,-2返),
3
拋物線與x軸的一個(gè)交點(diǎn)為A(4,0),點(diǎn)8(2,273)與點(diǎn)c關(guān)于),軸對(duì)稱.
(1)判斷點(diǎn)C是否在該拋物線上,并說明理由;
(2)順次連接AB,BC,CO,判斷四邊形ABC。的形狀并證明;
(3)設(shè)點(diǎn)P是拋物線上的動(dòng)點(diǎn),連接以、PC、AC,△應(yīng)C的面積S隨點(diǎn)P的運(yùn)動(dòng)而變
化,請(qǐng)?zhí)骄縎的大小變化并填寫表格①?④處的內(nèi)容;當(dāng)5的值為②時(shí),求點(diǎn)P的橫坐
標(biāo)的值.
直線AC的函數(shù)表達(dá)S取的一個(gè)特殊值滿足條件的P點(diǎn)的個(gè)S的可能取值范圍
式數(shù)
①_______64個(gè)③_______
⑦_(dá)_______3個(gè)\
102個(gè)④_______
8.(2020?濰坊)如圖,拋物線、=0?+區(qū)+8(a¥0)與x軸交于點(diǎn)A(-2,0)和點(diǎn)B(8,
0),與y軸交于點(diǎn)C,頂點(diǎn)為。,連接AC,BC,BC與拋物線的對(duì)稱軸/交于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),連接PB,PC,當(dāng)&PBC=3SAABC時(shí),求點(diǎn)尸
5
的坐標(biāo);
(3)點(diǎn)N是對(duì)稱軸/右側(cè)拋物線上的動(dòng)點(diǎn),在射線ED上是否存在點(diǎn)M,使得以點(diǎn)M,
N,E為頂點(diǎn)的三角形與△OBC相似?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
9.(2022?濰坊)【情境再現(xiàn)】
甲、乙兩個(gè)含45°角的直角三角尺如圖①放置,甲的直角頂點(diǎn)放在乙斜邊上的高的垂足
O處.將甲繞點(diǎn)。順時(shí)針旋轉(zhuǎn)一個(gè)銳角到圖②位置.小瑩用作圖軟件Geoge6M按圖②作
出示意圖,并連接AG,BH,如圖③所示,AB交”。于E,4c交。G于尸,通過證明4
OBE^/\OAF,可得。E=。£
請(qǐng)你證明:AG=BH.
【遷移應(yīng)用】
延長(zhǎng)GA分別交HO,HB所在直線于點(diǎn)尸,D,如圖④,猜想并證明。G與8”的位置關(guān)
系.
【拓展延伸】
小亮將圖②中的甲、乙換成含30°角的直角三角尺如圖⑤,按圖⑤作出示意圖,并連接
HB,AG,如圖⑥所示,其他條件不變,請(qǐng)你猜想并證明AG與8H的數(shù)量關(guān)系.
圖①圖②圖③
七.切線的判定與性質(zhì)(共1小題)
10.(2020?濰坊)如圖,A3為00的直徑,射線4。交。。于點(diǎn)F,點(diǎn)C為劣弧崩的中點(diǎn),
過點(diǎn)C作CEHD,垂足為E,連接AC.
(1)求證:CE是。。的切線;
(2)若NBAC=30°,4B=4,求陰影部分的面積.
八.圓錐的計(jì)算(共1小題)
11.(2022?濰坊)在數(shù)學(xué)實(shí)驗(yàn)課上,小瑩將含30°角的直角三角尺分別以兩個(gè)直角邊為軸
旋轉(zhuǎn)一周,得到甲、乙兩個(gè)圓錐,并用作圖軟件Geoge4畫出如下示意圖.
小亮觀察后說:“甲、乙圓錐的側(cè)面都是由三角尺的斜邊AB旋轉(zhuǎn)得到,所以它們的側(cè)面
積相等.”
你認(rèn)同小亮的說法嗎?請(qǐng)說明理由.
九.圓的綜合題(共1小題)
12.(2021?濰坊)如圖,半圓形薄鐵皮的直徑AB=8,點(diǎn)。為圓心,C是半圓上一動(dòng)點(diǎn)(不
與A,8重合),連接AC并延長(zhǎng)到點(diǎn)。,使AC=C£>,過點(diǎn)。作A8的垂線?!苯磺?,
CB,A8于點(diǎn)E,F,H,連接OC,記NABC=。,。隨點(diǎn)C的移動(dòng)而變化.
(1)移動(dòng)點(diǎn)C,當(dāng)點(diǎn)H,。重合時(shí),求sin。的值;
(2)當(dāng)。<45°時(shí),求證:BH?AH=DH,FH;
(3)當(dāng)6=45°時(shí),將扇形OAC剪下并卷成一個(gè)圓錐的側(cè)面,求該圓錐的底面半徑和
高.
一十.幾何變換綜合題(共2小題)
13.(2021?濰坊)如圖1,在△ABC中,ZC=90°,/A8C=30°,AC=1,D為AABC
內(nèi)部的一動(dòng)點(diǎn)(不在邊上),連接BD,將線段BD繞點(diǎn)。逆時(shí)針旋轉(zhuǎn)60°,使點(diǎn)B到達(dá)
點(diǎn)尸的位置;將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使點(diǎn)4到達(dá)點(diǎn)E的位置,連接AD,
CD,AE,AF,BF,EF.
EE
(1)求證:尸E;
(2)①CD+OF+FE的最小值為;
②當(dāng)CO+QF+FE取得最小值時(shí),求證:AD//BF.
(3)如圖2,M,N,P分別是。凡AF,AE的中點(diǎn),連接MP,NP,在點(diǎn)。運(yùn)動(dòng)的過
程中,請(qǐng)判斷/MPN的大小是否為定值.若是,求出其度數(shù);若不是,請(qǐng)說明理由.
14.(2020?濰坊)如圖1,在△A8C中,/A=90°,A8=4C=&+1,點(diǎn)。,E分別在邊
AB,AC上,且AZ)=AE=1,連接。E.現(xiàn)將△AQE繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為a
(0°<a<360"),如圖2,連接CE,BD,CD.
(1)當(dāng)0°<a<180°時(shí),,求證:CE=BD;
(2)如圖3,當(dāng)a=90°時(shí),延長(zhǎng)CE交BD于點(diǎn)F,求證:CF垂直平分B£>;
(3)在旋轉(zhuǎn)過程中,求△BCD的面積的最大值,并寫出此時(shí)旋轉(zhuǎn)角a的度數(shù).
15.(2022?濰坊)(1)在計(jì)算------22-(;1嚴(yán)+|-6|+33------時(shí),小亮的計(jì)算過程
V3tan300-V64X(-2)-2+(-2)°
如下:
解:-22-(-1嚴(yán)+|-6|+33
V3tan30°-為64X(-2)2+(-2)°
4-(-1)-6+27
V3XV3-4X22+0
=4+1-6+27
3-16
=-2
小瑩發(fā)現(xiàn)小亮的計(jì)算有誤,幫助小亮找出了3個(gè)錯(cuò)誤.請(qǐng)你找出其他錯(cuò)誤,參照①?③
的格式寫在橫線上,并依次標(biāo)注序號(hào):
①-2^=4;②(-1)i°=-1;③|-6|=-6;
請(qǐng)寫出正確的計(jì)算過程.
2
(2)先化簡(jiǎn),再求值:(N-—L)T二3J其中X是方程--2x-3=0的根.
2
x-3xX+6X+9
一十二.解直角三角形的應(yīng)用(共1小題)
16.(2022?濰坊)筒車是我國(guó)古代利用水力驅(qū)動(dòng)的灌溉工具,車輪縛以竹筒,旋轉(zhuǎn)時(shí)低則舀
水,高則瀉水.如圖,水力驅(qū)動(dòng)筒車按逆時(shí)針方向轉(zhuǎn)動(dòng),竹筒把水引至A處,水沿射線
方向?yàn)a至水渠。E,水渠OE所在直線與水面P。平行.設(shè)筒車為與直線
PQ交于P,Q兩點(diǎn),與直線OE交于C兩點(diǎn),恰有連接48,AC.
(1)求證:AO為。。的切線;
(2)筒車的半徑為3m,AC=BC,ZC=30°.當(dāng)水面上升,A,O,。三點(diǎn)恰好共線時(shí),
求筒車在水面下的最大深度(精確到0.麗,參考值:&-1.4,73^1.7).
一十三.解直角三角形的應(yīng)用-仰角俯角問題(共1小題)
17.(2020?濰坊)某校“綜合與實(shí)踐”小組采用無人機(jī)輔助的方法測(cè)量一座橋的長(zhǎng)度.如圖,
橋A8是水平并且筆直的,測(cè)量過程中,小組成員遙控?zé)o人機(jī)飛到橋A8的上方120米的
點(diǎn)C處懸停,此時(shí)測(cè)得橋兩端A,8兩點(diǎn)的俯角分別為60°和45°,求橋AB的長(zhǎng)度.
18.(2021?濰坊)如圖,某海岸線M的方向?yàn)楸逼珫|75°,甲、乙兩船同時(shí)出發(fā)向C處海
島運(yùn)送物資.甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30。方
向航行,其中乙船的平均速度為v.若兩船同時(shí)到達(dá)C處海島,求甲船的平均速度.(結(jié)
果用v表示.參考數(shù)據(jù):加g1.4,y=1.7)
一十五.頻數(shù)(率)分布直方圖(共1小題)
19.(2022?濰坊)2022年5月,W市從甲、乙兩校各抽取10名學(xué)生參加全市語文素養(yǎng)水平
監(jiān)測(cè).
【學(xué)科測(cè)試】每名學(xué)生從3套不同的試卷中隨機(jī)抽取1套作答,小亮、小瑩都參加測(cè)試,
請(qǐng)用樹狀圖或列表法求小亮、小瑩作答相同試卷的概率.
樣本學(xué)生語文測(cè)試成績(jī)(滿分100分)如下表:
樣本學(xué)生成績(jī)平方差中眾
均位數(shù)
數(shù)數(shù)
甲5066666678808182839474.6141.04a66
校
乙6465697476767681828374.640.8476b
校
表中a=;b=
請(qǐng)從平均數(shù)、方差、中位數(shù)、眾數(shù)中選擇合適的統(tǒng)計(jì)量,評(píng)判甲、乙兩校樣本學(xué)生的語
文測(cè)試成績(jī).
【問卷調(diào)查】對(duì)樣本學(xué)生每年閱讀課外書的數(shù)量進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果把樣本學(xué)
生分為3組,制成頻數(shù)分布直方圖,如圖所示.
A組:0<xW20;B組:20cxW40;C組:40cxW60.
請(qǐng)分別估算兩校樣本學(xué)生閱讀課外書的平均數(shù)量(取各組上限與下限的中間值近似表示
該組的平均數(shù)).
【監(jiān)測(cè)反思】
①請(qǐng)用【學(xué)科測(cè)試】和【問卷調(diào)查】中的數(shù)據(jù),解釋語文測(cè)試成績(jī)與課外閱讀量的相關(guān)
性;
②若甲、乙兩校學(xué)生都超過2000人,按照卬市的抽樣方法,用樣本學(xué)生數(shù)據(jù)估計(jì)甲、
乙兩??傮w語文素養(yǎng)水平可行嗎?為什么?
一十六.列表法與樹狀圖法(共2小題)
20.(2021?濰坊)從甲、乙兩班各隨機(jī)抽取10名學(xué)生(共20人)參加數(shù)學(xué)素養(yǎng)測(cè)試,將測(cè)
試成績(jī)分為如下的5組(滿分為100分):A組:50?60,8組:60?70,C組:
70?80,。組:80?90,E組:90&WI00,分別制成頻數(shù)分布直方圖和扇形統(tǒng)計(jì)
圖如圖.
(1)根據(jù)圖中數(shù)據(jù),補(bǔ)充完整頻數(shù)分布直方圖并估算參加測(cè)試的學(xué)生的平均成績(jī)(取各
組成績(jī)的下限與上限的中間值近似的表示該組學(xué)生的平均成績(jī));
(2)參加測(cè)試的學(xué)生被隨機(jī)安排到4個(gè)不同的考場(chǎng),其中小亮、小剛兩名同學(xué)都參加測(cè)
試,用樹狀圖或列表法求小亮、小剛兩名同學(xué)被分在不同考場(chǎng)的概率;
(3)若甲、乙兩班參加測(cè)試的學(xué)生成績(jī)統(tǒng)計(jì)如下:
甲班:62,64,66,76,76,77,82,83,83,91;
乙班:51,52,69,70,71,71,88,89,99,100.
則可計(jì)算得兩班學(xué)生的樣本平均成績(jī)?yōu)榫?76,~=76;樣本方差為s甲2=80,sj
=2754請(qǐng)用學(xué)過的統(tǒng)計(jì)知識(shí)評(píng)判甲、乙兩班的數(shù)學(xué)素養(yǎng)總體水平并說明理由.
頻額
21.(2020?濰坊)在4月23日“世界讀書日”來臨之際,某校為了了解學(xué)生的課外閱讀情
況,從全校隨機(jī)抽取了部分學(xué)生,調(diào)查了他們平均每周的課外閱讀時(shí)間”單位:小時(shí).).把
調(diào)查結(jié)果分為四檔,A檔:,<8;8檔:8W/<9;C檔:9Wf<10;。檔:后10.根據(jù)調(diào)
查情況,給出了部分?jǐn)?shù)據(jù)信息:
①4檔和。檔的所有數(shù)據(jù)是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;
②圖1和圖2是兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答問題:
(1)求本次調(diào)查的學(xué)生人數(shù),并將圖2補(bǔ)充完整;
(2)已知全校共1200名學(xué)生,請(qǐng)你估計(jì)全校B檔的人數(shù);
(3)學(xué)校要從D檔的4名學(xué)生中隨機(jī)抽取2名作讀書經(jīng)驗(yàn)分享,已知這4名學(xué)生1名來
自七年級(jí),1名來自八年級(jí),2名來自九年級(jí),請(qǐng)用列表或畫樹狀圖的方法,求抽到的2
名學(xué)生來自不同年級(jí)的概率.
參考答案與試題解析
分式的化簡(jiǎn)求值(共1小題)
1.(2020?濰坊)先化簡(jiǎn),再求值:(1--AiL_)+三衛(wèi),其中X是16的算術(shù)平方根.
x-2x+lx-1
2
[解答]解:原式=(3-2丫1―x+1)+王3,
X2-2X+1X2-2X+1X-1
_/X2-3X、、/x-l
一L------)X-Q9
x-2x+lx-3
=x(x-3)xx-]
(x-1)2x-3’
—X
X-1
??”是16的算術(shù)平方根,
?*?x=4f
當(dāng)x=4時(shí),原式=2.
3
反比例函數(shù)與一次函數(shù)的交點(diǎn)問題(共1小題)
2.(2021?濰坊)(1)計(jì)算:(-2021)°+3V27+(1-3-2X18);
22
(2)先化簡(jiǎn),再求值:*-yMu)包3建-孫(2+3),其中(x,>)是
x2-2xy+y2x+yxy
函數(shù)y=2x與y=2的圖象的交點(diǎn)坐標(biāo).
X
【解答】解:(1)原式=1+3義3?+(1]義18),
=1+W3-h
=9^3;
(2)原式.(廣6⑵+之了)-2…=2x+3y-2y-3x=r+y,
(x-y)2x+y
:(x,y)是函數(shù)y=2x與y=2的圖象的交點(diǎn)坐標(biāo),
x
ry=2x
???聯(lián)立,2,
y=^~
用牛1可',,
y1=2[y2=-2
當(dāng)%=1,y=2時(shí),原式=-%+)=1,
當(dāng)x=-1,y=-2時(shí),原式=-x+y=-1.
三.反比例函數(shù)的應(yīng)用(共1小題)
3.(2021?濰坊)某山村經(jīng)過脫貧攻堅(jiān)和鄉(xiāng)村振興,經(jīng)濟(jì)收入持續(xù)增長(zhǎng).經(jīng)統(tǒng)計(jì),近五年該
村甲農(nóng)戶年度純收入如表所示:
年度(年)201620172018201920202021
年度純收1.52.54.57.511.3
入(萬元)
若記2016年度為第1年,在直角坐標(biāo)系中用點(diǎn)(1,1.5),(2,2.5),(3,4.5),(4,7.5),
(5,11.3)表示近五年甲農(nóng)戶純收入的年度變化情況.如圖所示,擬用下列三個(gè)函數(shù)模
擬甲農(nóng)戶從2016年開始的年度純收入變化趨勢(shì):(機(jī)>0),y=kx+b(4>0),y=
x
ax2-0.5x+c(a>0),以便估算甲農(nóng)戶2021年度的純收入.
(1)能否選用函數(shù)丁=必(加>0)進(jìn)行模擬,請(qǐng)說明理由;
x
(2)你認(rèn)為選用哪個(gè)函數(shù)模擬最合理,請(qǐng)說明理由;
(3)甲農(nóng)戶準(zhǔn)備在2021年底購(gòu)買一臺(tái)價(jià)值16萬元的農(nóng)機(jī)設(shè)備,根據(jù)(2)中你選擇的
函數(shù)表達(dá)式,預(yù)測(cè)甲農(nóng)戶2021年度的純收入能否滿足購(gòu)買農(nóng)機(jī)設(shè)備的資金需求.
力萬元
11
10
9
8
7
6
4
3
2
依,:1.外::::::
1
01123456789二,年度
【解答】解:(1)VIX1.5^1.5,2X2.5=5,
1.5#5,
,不能選用函數(shù)>=皿(m>0)進(jìn)行模擬.
x
(2)選用y=G?-0.5x+c(a>0),理由如下,
由(1)可知不能選用函數(shù)'=處(機(jī)>0),
x
由(1,1.5),(2,2.5),(3,4.5),(4,7.5),(5,11.3)可知,
x每增大1個(gè)單位,y的變化不均勻,
不能選用函數(shù)(無>0),
故只能選用函數(shù)y=a/-0.5x+c(a>0)模擬.
(3)把(1,1.5),(2,2.5)代入y=o?-0.5x+c(a>0)得:
[a-0.5+c=1.5,解得:[a=0.5,
Ua-l+c=2.5lc=l.5
,y=0.5/-0.5x+1.5,
當(dāng)x=6時(shí),>,=0.5X36-0.5X6+1.5=16.5,
VI6.5>16,
甲農(nóng)戶2021年度的純收入滿足購(gòu)買農(nóng)機(jī)設(shè)備的資金需求.
四.二次函數(shù)的應(yīng)用(共2小題)
4.(2022?濰坊)某市在鹽堿地種植海水稻獲得突破性進(jìn)展,小亮和小瑩到海水稻種植基地
調(diào)研.小瑩根據(jù)水稻年產(chǎn)量數(shù)據(jù),分別在直角坐標(biāo)系中描出表示2017-2021年①號(hào)田和
②號(hào)田年產(chǎn)量情況的點(diǎn)(記2017年為第1年度,橫軸表示年度,縱軸表示年產(chǎn)量),如
圖.
近5年①號(hào)田年產(chǎn)量+近5年②號(hào)田年產(chǎn)蚩
/噸噸
4一?(5,3.5)4(434),-
??(2,3.5)
3-?(4,3.0)3?(3,3.1)
?(3,2.5)*(2,2.6)
2-.*(2,2.0)2
(1,1.9)
1-(1,1.5)1
O~1~23~lO12345工/年度
小亮認(rèn)為,可以從>=丘+6(k>0),(%>0),y--0.1/+ar+c中選擇適當(dāng)?shù)暮瘮?shù)
x
模型,模擬①號(hào)田和②號(hào)田的年產(chǎn)量變化趨勢(shì).
(1)小瑩認(rèn)為不能選丫=史你認(rèn)同嗎?請(qǐng)說明理由;
x
(2)請(qǐng)從小亮提供的函數(shù)模型中,選擇適當(dāng)?shù)哪P头謩e模擬①號(hào)田和②號(hào)田的年產(chǎn)量變
化趨勢(shì),并求出函數(shù)表達(dá)式;
(3)根據(jù)(2)中你選擇的函數(shù)模型,請(qǐng)預(yù)測(cè)①號(hào)田和②號(hào)田總年產(chǎn)量在哪一年最大?
最大是多少?
【解答】解:(1)認(rèn)同,理由是:當(dāng)機(jī)>0時(shí),y=旦中,y隨x的增大而減小,而從圖中
x
描點(diǎn)可知,x增大),隨之增大,故不能選丫=如(相>0);
X
(2)觀察①號(hào)田和②號(hào)田的年產(chǎn)量變化趨勢(shì)可知,①號(hào)田為y=fcr+6*>0),②號(hào)田為
y=-0.1,+ax+c,
把(1,1.5),(2,2.0)代入得:
fk+b=l.5
l2k+b=2.0,
解得(k=0.5,
lb=l
.,.y=0.5x+l;
把(1,1.9),(2,2.6)代入y=-0.1/+4X+C得:
1-0.l+a+c=l.9
I-0.4+2a+c=2.6
解得卜=1,
Ic=l
.?.y=-0.17+x+l,
答:模擬①號(hào)田的函數(shù)表達(dá)式為y=0.5x+l,模擬②號(hào)田的函數(shù)表達(dá)式為y=-0.1/+X+1;
(3)設(shè)①號(hào)田和②號(hào)田總年產(chǎn)量為w噸,
由(2)知,w=0.5x+l+(-0.17+x+l)=-0.1?+1.5x+2=-0.1(x-7.5)2+7.625,
V-0.K0,拋物線對(duì)稱軸為直線x=7.5,而x為整數(shù),
.,.當(dāng)x=7或8時(shí),w取最大值,最大值為7.6,
答:①號(hào)田和②號(hào)田總年產(chǎn)量在2023年或2024年最大,最大是7.6噸.
5.(2020?濰坊)因疫情防控需要,消毒用品需求量增加.某藥店新進(jìn)一批桶裝消毒液,每
桶進(jìn)價(jià)50元,每天銷售量y(桶)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,其圖象
如圖所示.
(1)求y與x之間的函數(shù)表達(dá)式;
(2)每桶消毒液的銷售價(jià)定為多少元時(shí),藥店每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
(利潤(rùn)=銷售價(jià)-進(jìn)價(jià))
【解答】解:(1)設(shè)y與銷售單價(jià)x之間的函數(shù)關(guān)系式為:y^kx+b,
將點(diǎn)(60,100)、(70,80)代入一次函數(shù)表達(dá)式得:C°°=60k+b,
l80=70k+b
解得:尸2,
lb=220
故函數(shù)的表達(dá)式為:y=-2x+220;
(2)設(shè)藥店每天獲得的利潤(rùn)為w元,由題意得:
卬=(x-50)(-2r+220)=-2(x-80)2+1800,
:-2<0,函數(shù)有最大值,
...當(dāng)x=80時(shí),w有最大值,此時(shí)最大值是1800,
故銷售單價(jià)定為80元時(shí),該藥店每天獲得的利潤(rùn)最大,最大利潤(rùn)1800元.
五.二次函數(shù)綜合題(共3小題)
6.(2022?濰坊)為落實(shí)“雙減”,老師布置了一項(xiàng)這樣的課后作業(yè):
二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-1),且不經(jīng)過第一象限,寫出滿足這些條件的一個(gè)函數(shù)
表達(dá)式.
【觀察發(fā)現(xiàn)】
請(qǐng)完成作業(yè),并在直角坐標(biāo)系中畫出大致圖象.
【思考交流】
小亮說:“滿足條件的函數(shù)圖象的對(duì)稱軸一定在y軸的左側(cè).”
小瑩說:“滿足條件的函數(shù)圖象一定在x軸的下方
你認(rèn)同他們的說法嗎?若不認(rèn)同,請(qǐng)舉例說明.
【概括表達(dá)】
小博士認(rèn)為這個(gè)作業(yè)的答案太多,老師不方便批閱,于是探究了二次函數(shù)y=ax2+bx+c
的圖象與系數(shù)a,b,c的關(guān)系,得出了提高老師作業(yè)批閱效率的方法.
請(qǐng)你探究這個(gè)方法,寫出探究過程.
1:2??
1??
11??
11??
一」____?1??
11
1??
11??
11??
11??
小2二10i2左
1?11
1?11
11
'(T,T)?i
1??
11??
11??
11—2??
1???
1???
1???
___1_L
1?—311
1?11
【解答】解:y=-7(答案不為唯一);
【觀察發(fā)現(xiàn)】
如圖:
【思考交流】
???拋物線的對(duì)稱軸為x=-且,。<0,
2a
.?.拋物線的對(duì)稱軸可以在y軸的左側(cè),也可以在y軸的右側(cè),或者是y軸,
例如:y=-x2;
小亮的說法不正確;
???拋物線不經(jīng)過第一象限,
拋物線的圖象一定在x軸的下方,
小瑩的說法不正確;
【概括表達(dá)】
設(shè)y—a^+bx+c,
?.?二次函數(shù)的圖象不經(jīng)過第一象限,
:.a<0,
?.?經(jīng)過點(diǎn)(-1,-1),
/.a-b+c=-1,
:.a=b-c-1VO,
:.b-c<1.
7.(2021?濰坊)如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)為M(2,-2返),
3
拋物線與x軸的一個(gè)交點(diǎn)為A(4,0),點(diǎn)、B(2,273)與點(diǎn)C關(guān)于y軸對(duì)稱.
(1)判斷點(diǎn)C是否在該拋物線上,并說明理由;
(2)順次連接A8,BC,CO,判斷四邊形A8CO的形狀并證明;
(3)設(shè)點(diǎn)尸是拋物線上的動(dòng)點(diǎn),連接布、PC、AC,△%C的面積S隨點(diǎn)P的運(yùn)動(dòng)而變
化,請(qǐng)?zhí)骄縎的大小變化并填寫表格①?④處的內(nèi)容;當(dāng)S的值為②時(shí),求點(diǎn)P的橫坐
標(biāo)的值.
直線AC的函數(shù)表達(dá)式S取的一個(gè)特殊值滿足條件的P點(diǎn)的個(gè)S的可能取值范圍
數(shù)
③0<S<^^~
①y=x+4^^64個(gè)
3—32
②.9近
3個(gè)\
一2一
102個(gè)@s>
2—
【解答】解:(1)設(shè)拋物線解析式為y=a(x-2)2-2應(yīng),將4(4,0)代入,
_3
得:0=“(4-2)2-國(guó)或
_3
解得:a=叵,
6__
...拋物線解析式為(X-2)2一2應(yīng)=返42,
'6363
?.,點(diǎn)B(2,2M)與點(diǎn)C關(guān)于y軸對(duì)稱,
:.C(-2,273),
當(dāng)x=-2時(shí),尸返(-2-2)2-273.=2^3,
63
...點(diǎn)C在該拋物線>=亞(X-2)2-2巨上;
63
(2)四邊形A2CO是菱形.
證明:':B(2,2盯),C(-2,2代),
,8C〃x軸,BC=2-(-2)=4,
VA(4,0),
:.OA=4,
:.BC=OA,
:.四邊形ABCO是平行四邊形,
OC=N(-2-0)2+(2焉-0)2=%
:.OC=OA,
四邊形A8CO是菱形.
(3)①設(shè)直線AC的函數(shù)表達(dá)式為>=日+6,
VA(4,0),C(-2,2百),
.f4k+b=0
直線AC的函數(shù)表達(dá)式為y=H計(jì)生叵;
33
故答案為:y=二且x+生叵;
33
②當(dāng)點(diǎn)P在直線AC下方的拋物線上時(shí),如圖2,
設(shè)P(f,亞)-漢乙),過點(diǎn)尸作尸”〃),軸交直線AC于點(diǎn)H,
63
則HG,//1_什生巨),
33______
:.PH=國(guó)”-西-迎t)=-a+&①
3363633
;滿足條件的P點(diǎn)有3個(gè),
二在直線AC下方的拋物線上只有1個(gè)點(diǎn)尸,即S△用c的值最大,
":S^PAC=S^PHC+S?PHA=^PH'[4-(-2)]=3PH=3(-亞*+叵+1巨)=jZl
26332
(Z-1)2+加巨,
2_
當(dāng),=1時(shí),S△以c取得最大值您應(yīng),此時(shí),點(diǎn)P的坐標(biāo)為(1,-叵),
22
故答案為:生應(yīng);
2_
③由②知,當(dāng)0<S<生巨時(shí),在直線AC下方的拋物線上有2個(gè)點(diǎn)P,滿足SA%C=S,
2
在直線AC上方的拋物線上一定有2個(gè)點(diǎn)P,滿足S△%c=S,
.?.滿足條件S△附c=S的P點(diǎn)有4個(gè),符合題意.
故答案為:0<S<2叵;
2
④???滿足條件S^PAC=S的P點(diǎn)只有2個(gè),而在直線AC上方的拋物線上一定有2個(gè)點(diǎn)P,
滿足S△以c=S,
??.在直線AC下方的拋物線上沒有點(diǎn)P,滿足S△抬c=S,
由②知,當(dāng)S>國(guó)?時(shí),在直線AC下方的拋物線上沒有點(diǎn)P,滿足&MC=S,符合題
2
忌.
故答案為:s>生巨.
2
點(diǎn)P的橫坐標(biāo)的值為1,
當(dāng)點(diǎn)P在直線AC上方時(shí),如圖3,
■:SAPAC=S&PCH-S^PAH^1PH<XA-xc)=3PH=K
22
2_
?14?=3?
6332
解得:f=l±3&,
綜上所述,點(diǎn)P的橫坐標(biāo)為1或1-3、歷或1+3、歷.
8.(2020?濰坊)如圖,拋物線丫=4『+區(qū)+8(a¥0)與x軸交于點(diǎn)A(-2,0)和點(diǎn)B(8,
0),與y軸交于點(diǎn)C,頂點(diǎn)為。,連接AC,BC,BC與拋物線的對(duì)稱軸/交于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是第一象限內(nèi)拋物線上的動(dòng)點(diǎn),連接PB,PC,當(dāng)&PBC=3SAABC時(shí),求點(diǎn)尸
5
的坐標(biāo);
(3)點(diǎn)N是對(duì)稱軸I右側(cè)拋物線上的動(dòng)點(diǎn),在射線ED上是否存在點(diǎn)M,使得以點(diǎn)M,
N,E為頂點(diǎn)的三角形與△OBC相似?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【解答】解:(1):拋物線(aWO)過點(diǎn)A(-2,0)和點(diǎn)2(8,0),
.(4a-2b+8=0
I64a+8b+8=0
'.1
解得]a-T.
b=3
...拋物線解析式為:y=-lx2+3x+8;
(2)當(dāng)x=0時(shí),y=8,
:.C(0,8),
???直線BC解析式為:y=-x+8,
..11
?SAABCx10X8=40^
?3
,,SAPBC^SAABC=24,
過點(diǎn)P作PG_Lx軸,交x軸于點(diǎn)G,交BC于點(diǎn)F,
設(shè)P(t,-^-t2+3t+8)'
:.F(6-/+8),
?12
??PF=-2-t+4f
?1
..§京甘評(píng)哂=24,
嗚義(亭?+4t)X8=24,
;.“=2,f2=6.
:.P\(2,12),P-i(6,8);
圖1
(3)存在,點(diǎn)例的坐標(biāo)為:(3,8),(3,5+VI^)或(3,11).
VC(0,8),B(8,0),NCOB=90°,
...△OBC為等腰直角三角形,
拋物線的對(duì)稱軸為,
y=J_x2+3x+8x=-7%=------^^=3
益)
22X(1
...點(diǎn)E的橫坐標(biāo)為3,
又?.?點(diǎn)E在直線8c上,
,點(diǎn)E的縱坐標(biāo)為5,
:.E(3,5),
設(shè)見(3,m),N(n,-^-n2+3n+8)T
①當(dāng)MN=EM,NEMN=90°,
,m-5=n-3
△NMEs/\C0B,貝U12,
為n+3n+8=m
解得[n=6或]n=-2(舍去),
Im=8Im=0
此時(shí)點(diǎn)M的坐標(biāo)為(3,8),
②當(dāng)ME=EN,當(dāng)NMEN=90°時(shí),
m-5=n-3
則
-y1n^2+3n+8=5,
卜=5+怖或卜=5-后(舍去),
解得:
ln=3+V15ln=3-V15
此時(shí)點(diǎn)M的坐標(biāo)為(3,5+V15);
③當(dāng)MN=EN,NMNE=90°時(shí),
此時(shí)△〃代《與△COB相似,
此時(shí)的點(diǎn)M與點(diǎn)E關(guān)于①的結(jié)果(3,8)對(duì)稱,
設(shè)M(3,〃?),
則m-8=8-5,
解得m=\\,
:.M(3,11):
故在射線灰)上存在點(diǎn)M,使得以點(diǎn)M,N,E為頂點(diǎn)的三角形與aOBC相似,點(diǎn)M的
坐標(biāo)為:(3,8)或(3,5+VI^)或(3,11).
六.全等三角形的判定與性質(zhì)(共1小題)
9(2022?濰坊)【情境再現(xiàn)】
甲、乙兩個(gè)含45°角的直角三角尺如圖①放置,甲的直角頂點(diǎn)放在乙斜邊上的高的垂足
O處.將甲繞點(diǎn)。順時(shí)針旋轉(zhuǎn)一個(gè)銳角到圖②位置.小瑩用作圖軟件Geogebra按圖②作
出示意圖,并連接AG,BH,如圖③所示,AB交H0于E,AC交。G于尸,通過證明4
0BE940AF,nJWOE=OF.
請(qǐng)你證明:AG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 地磁異常與地震預(yù)測(cè)-深度研究
- 農(nóng)產(chǎn)品供應(yīng)鏈風(fēng)險(xiǎn)管理策略-深度研究
- 2025年度個(gè)人無抵押借款合同范本8篇
- 2025年度鋼構(gòu)建筑智能化系統(tǒng)施工合同協(xié)議
- 2025年度民房建筑施工環(huán)境保護(hù)合同標(biāo)準(zhǔn)4篇
- 二零二五年度劇本改編直播劇合同范本3篇
- 2025年度電梯安裝工程節(jié)能改造與運(yùn)維合同2篇
- 二零二五版面粉加工企業(yè)節(jié)能減排合同4篇
- 二零二四年衛(wèi)星導(dǎo)航系統(tǒng)應(yīng)用開發(fā)合同2篇
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全監(jiān)管與風(fēng)險(xiǎn)評(píng)估協(xié)議4篇
- 《裝配式蒸壓加氣混凝土外墻板保溫系統(tǒng)構(gòu)造》中
- T-CSTM 01124-2024 油氣管道工程用工廠預(yù)制袖管三通
- 2019版新人教版高中英語必修+選擇性必修共7冊(cè)詞匯表匯總(帶音標(biāo))
- 新譯林版高中英語必修二全冊(cè)短語匯總
- 基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的游客規(guī)模預(yù)測(cè)研究
- 河道保潔服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 品管圈(QCC)案例-縮短接臺(tái)手術(shù)送手術(shù)時(shí)間
- 精神科病程記錄
- 閱讀理解特訓(xùn)卷-英語四年級(jí)上冊(cè)譯林版三起含答案
- 清華大學(xué)考博英語歷年真題詳解
- 人教版三年級(jí)上冊(cè)口算題(全冊(cè)完整20份 )
評(píng)論
0/150
提交評(píng)論