《四邊形》經(jīng)典60題_第1頁
《四邊形》經(jīng)典60題_第2頁
《四邊形》經(jīng)典60題_第3頁
《四邊形》經(jīng)典60題_第4頁
《四邊形》經(jīng)典60題_第5頁
已閱讀5頁,還剩102頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

朽木易折,金石可鏤。千里之行,始于足下。第頁/共頁中考數(shù)學(xué)提分沖刺真題精析:四邊形一、解答題(共60小題)1.(2014?遵義)如圖,?ABCD中,BD⊥AD,∠A=45°,E、F分離是AB,CD上的點,且BE=DF,銜接EF交BD于O.(1)求證:BO=DO;(2)若EF⊥AB,延伸EF交AD的延伸線于G,當(dāng)FG=1時,求AD的長.2.(2014?鎮(zhèn)江)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.(1)求證:∠1=∠2;(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.3.(2014?云南)如圖,在平行四邊形ABCD中,∠C=60°,M、N分離是AD、BC的中點,BC=2CD.(1)求證:四邊形MNCD是平行四邊形;(2)求證:BD=MN.4.(2014?鹽城)如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分離交DA、BC的延伸線于點E、F,銜接BE、DF.(1)求證:四邊形BFDE是平行四邊形;(2)若EF⊥AB,垂足為M,tan∠MBO=,求EM:MF的值.5.(2014?雅安)如圖:在?ABCD中,AC為其對角線,過點D作AC的平行線與BC的延伸線交于E.(1)求證:△ABC≌△DCE;(2)若AC=BC,求證:四邊形ACED為菱形.6.(2014?宿遷)如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點P從點B開始沿折線BC﹣CD﹣DA以1cm/s的速度運動到點A.設(shè)點P運動的時光為t(s),△PAB面積為S(cm2).(1)當(dāng)t=2時,求S的值;(2)當(dāng)點P在邊DA上運動時,求S關(guān)于t的函數(shù)表達式;(3)當(dāng)S=12時,求t的值.7.(2014?新疆)如圖,已知△ABC,按如下步驟作圖:①分離以A,C為圓心,大于AC的長為半徑畫弧,兩弧交于P,Q兩點;②作直線PQ,分離交AB,AC于點E,D,銜接CE;③過C作CF∥AB交PQ于點F,銜接AF.(1)求證:△AED≌△CFD;(2)求證:四邊形AECF是菱形.8.(2014?襄陽)如圖,在正方形ABCD中,AD=2,E是AB的中點,將△BEC繞點B逆時針旋轉(zhuǎn)90°后,點E落在CB的延伸線上點F處,點C落在點A處.再將線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,銜接EF,CG.(1)求證:EF∥CG;(2)求點C,點A在旋轉(zhuǎn)過程中形成的,與線段CG所圍成的陰影部分的面積.9.(2014?湘西州)如圖,在?ABCD中,點E、F分離在邊BC和AD上,且BE=DF.(1)求證:△ABE≌△CDF;(2)求證:AE=CF.10.(2014?濰坊)如圖1,在正方形ABCD中,E、F分離為BC、CD的中點,銜接AE、BF,交點為G.(1)求證:AE⊥BF;(2)將△BCF沿BF對折,得到△BPF(如圖2),延伸FP到BA的延伸線于點Q,求sin∠BQP的值;(3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正巧落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當(dāng)正方形ABCD的面積為4時,求四邊形GHMN的面積.11.(2014?泰州)如圖,BD是△ABC的角平分線,點E,F(xiàn)分離在BC、AB上,且DE∥AB,EF∥AC.(1)求證:BE=AF;(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.12.(2014?臺州)如圖1是某公交汽車擋風(fēng)玻璃的雨刮器,其工作原理如圖2.雨刷EF⊥AD,垂足為A,AB=CD且AD=BC,這樣能使雨刷EF在運動時,一直垂直于玻璃窗下沿BC,請證實這一結(jié)論.13.(2014?遂寧)已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延伸線于點F,連結(jié)DF.求證:(1)△ODE≌△FCE;(2)四邊形ODFC是菱形.14.(2014?隨州)已知:如圖,在矩形ABCD中,M、N分離是邊AD、BC的中點,E、F分離是線段BM、CM的中點.(1)求證:△ABM≌△DCM;(2)填空:當(dāng)AB:AD=時,四邊形MENF是正方形.15.(2014?深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)證實四邊形ABDF是平行四邊形;(2)若AF=DF=5,AD=6,求AC的長.16.(2014?欽州)如圖,在正方形ABCD中,E、F分離是AB、BC上的點,且AE=BF.求證:CE=DF.17.(2014?攀枝花)如圖,在梯形OABC中,OC∥AB,OA=CB,點O為坐標(biāo)原點,且A(2,﹣3),C(0,2).(1)求過點B的雙曲線的解析式;(2)若將等腰梯形OABC向右平移5個單位,問平移后的點C是否落在(1)中的雙曲線上?并簡述理由.18.(2014?寧德)如圖,在梯形ABCD中,AD∥BC,點E是BC的中點,銜接AC,DE,AC=AB,DE∥AB.求證:四邊形AECD是矩形.19.(2014?牡丹江)如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,銜接CD、BE.(1)求證:CE=AD;(2)當(dāng)D在AB中點時,四邊形BECD是什么異常四邊形?說明你的理由;(3)若D為AB中點,則當(dāng)∠A的大小滿意什么條件時,四邊形BECD是正方形?請說明你的理由.20.(2014?梅州)如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延伸線上一點,且DF=BE.(1)求證:CE=CF;(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?21.(2014?龍巖)如圖,我們把依次銜接隨意四邊形ABCD各邊中點所得四邊形EFGH叫中點四邊形.(1)若四邊形ABCD是菱形,則它的中點四邊形EFGH一定是;A.菱形B.矩形C.正方形D.梯形(2)若四邊形ABCD的面積為S1,中點四邊形EFGH的面積記為S2,則S1與S2的數(shù)量關(guān)系是S1=S2;(3)在四邊形ABCD中,沿中點四邊形EFGH的其中三邊剪開,可得三個小三角形,將這三個小三角形與原圖中未剪開的小三角形拼接成一個平行四邊形,請畫出一種拼接暗示圖,并寫出對應(yīng)全等的三角形.22.(2014?涼山州)如圖,分離以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,銜接DF.(1)試說明AC=EF;(2)求證:四邊形ADFE是平行四邊形.23.(2014?連云港)如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.(1)求證:四邊形OCED為菱形;(2)銜接AE、BE,AE與BE相等嗎?請說明理由.24.(2014?樂山)如圖,在△ABC中,AB=AC,四邊形ADEF是菱形,求證:BE=CE.25.(2014?樂山)如圖,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足為點E.若AD=1,AB=2,求CE的長.26.(2014?黃石)如圖,A、B是圓O上的兩點,∠AOB=120°,C是的中點.(1)求證:AB平分∠OAC;(2)延伸OA至P,使得OA=AP,銜接PC,若圓O的半徑R=1,求PC的長.27.(2014?葫蘆島)如圖,在△ABC中,AB=AC,點D(不與點B重合)在BC上,點E是AB的中點,過點A作AF∥BC交DE延伸線于點F,銜接AD,BF.(1)求證:△AEF≌△BED.(2)若BD=CD,求證:四邊形AFBD是矩形.28.(2014?賀州)如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.(1)求證:BE=DF;(2)求證:AF∥CE.29.(2014?菏澤)已知:如圖,正方形ABCD,BM、DN分離平分正方形的兩個外角,且滿意∠MAN=45°,銜接MN.(1)若正方形的邊長為a,求BM?DN的值.(2)若以BM,DN,MN為三邊圍成三角形,試預(yù)測三角形的形狀,并證實你的結(jié)論.30.(2014?桂林)在?ABCD中,對角線AC、BD交于點O,過點O作直線EF分離交線段AD、BC于點E、F.(1)按照題意,畫出圖形,并標(biāo)上準(zhǔn)確的字母;(2)求證:DE=BF.31.(2014?貴陽)如圖,在Rt△ABC中,∠ACB=90°,D、E分離為AB,AC邊上的中點,銜接DE,將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,銜接AF,AC.(1)求證:四邊形ADCF是菱形;(2)若BC=8,AC=6,求四邊形ABCF的周長.32.(2014?貴港)如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,銜接BE.(1)求證:DF=AE;(2)當(dāng)AB=2時,求BE2的值.33.(2014?甘孜州)如圖,在?ABCD中,E,F(xiàn)分離為BC,AB中點,銜接FC,AE,且AE與FC交于點G,AE的延伸線與DC的延伸線交于點N.(1)求證:△ABE≌△NCE;(2)若AB=3n,F(xiàn)B=GE,試用含n的式子表示線段AN的長.34.(2014?撫順)如圖,在矩形ABCD中,E是CD邊上的點,且BE=BA,以點A為圓心、AD長為半徑作⊙A交AB于點M,過點B作⊙A的切線BF,切點為F.(1)請判斷直線BE與⊙A的位置關(guān)系,并說明理由;(2)倘若AB=10,BC=5,求圖中陰影部分的面積.35.(2014?崇左)如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分離是AB,BC,CD,DA的中點,依次銜接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.36.(2014?北京)如圖,在?ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,銜接EF,PD.(1)求證:四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.37.(2014?包頭)如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,點E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的長.(注重:本題中的計算過程和結(jié)果均保留根號)38.(2014?安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,(1)求證:四邊形ADCE為矩形;(2)當(dāng)△ABC滿意什么條件時,四邊形ADCE是一個正方形?并給出證實.39.(2013?株洲)已知四邊形ABCD是邊長為2的菱形,∠BAD=60°,對角線AC與BD交于點O,過點O的直線EF交AD于點E,交BC于點F.(1)求證:△AOE≌△COF;(2)若∠EOD=30°,求CE的長.40.(2013?云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.(1)求證:四邊形ADBE是矩形;(2)求矩形ADBE的面積.41.(2013?宜昌)如圖,點E,F(xiàn)分離是銳角∠A兩邊上的點,AE=AF,分離以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,銜接DE,DF.(1)請你判斷所畫四邊形的形狀,并說明理由;(2)銜接EF,若AE=8厘米,∠A=60°,求線段EF的長.42.(2013?無錫)如圖,四邊形ABCD中,對角線AC與BD相交于點O,在①AB∥CD;②AO=CO;③AD=BC中隨意選取兩個作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)造命題.(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請證實;若不是,請舉出反例;(2)寫出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“倘若…,那么….”的形式)43.(2013?鐵嶺)如圖,△ABC中,AB=AC,AD是∠BAC的角平分線,點O為AB的中點,銜接DO并延伸到點E,使OE=OD,銜接AE,BE.(1)求證:四邊形AEBD是矩形;(2)當(dāng)△ABC滿意什么條件時,矩形AEBD是正方形,并說明理由.44.(2013?深圳)如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC與BD交于點O,延伸BC到E,使得CE=AD,銜接DE.(1)求證:BD=DE.(2)若AC⊥BD,AD=3,SABCD=16,求AB的長.45.(2013?上海)如圖,在△ABC中,∠ACB=90°,∠B>∠A,點D為邊AB的中點,DE∥BC交AC于點E,CF∥AB交DE的延伸線于點F.(1)求證:DE=EF;(2)連結(jié)CD,過點D作DC的垂線交CF的延伸線于點G,求證:∠B=∠A+∠DGC.46.(2013?欽州)如圖,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求證:梯形ABCD是等腰梯形.47.(2013?南京)如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分離為M,N.(1)求證:∠ADB=∠CDB;(2)若∠ADC=90°,求證:四邊形MPND是正方形.48.(2013?南充)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(不與B,C重合),過點P作∠APE=∠B,PE交CD于E.(1)求證:△APB∽△PEC;(2)若CE=3,求BP的長.49.(2013?黃岡)如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H,銜接OH,求證:∠DHO=∠DCO.50.(2013?防城港)如圖,在直角梯形ABCD中,AD∥BC,AD⊥DC,點A關(guān)于對角線BD的對稱點F剛好落在腰DC上,銜接AF交BD于點E,AF的延伸線與BC的延伸線交于點G,M,N分離是BG,DF的中點.(1)求證:四邊形EMCN是矩形;(2)若AD=2,S梯形ABCD=,求矩形EMCN的長和寬.51.(2013?鄂爾多斯)如圖,在梯形ABCD中,AD∥BC,AB=CD,分離以AB,CD為邊向外側(cè)作等邊三角形ABE和等邊三角形DCF,銜接AF,DE.(1)求證:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面積之和等于梯形ABCD的面積,求BC的長.52.(2013?朝陽)如圖,在梯形ABCD中,AD∥BC,AD=CD,過點A作AE∥DC交BC于點E.(1)求證:四邊形AECD是菱形.(2)在(1)的條件下,若∠B=30°,AE⊥AB,以點A為圓心,AE的長為半徑畫弧交BE于點F,銜接AF,在圖中,用尺規(guī)補齊圖形(僅保留作圖足跡),并證實點F是BE的中點.53.(2013?鞍山)如圖,E,F(xiàn)是四邊形ABCD的對角線AC上兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB;(2)四邊形ABCD是平行四邊形.54.(2012?鹽城)如圖所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E為BC上一點,∠BDE=∠DBC.(1)求證:DE=EC;(2)若AD=BC,試判斷四邊形ABED的形狀,并說明理由.55.(2012?襄陽)如圖,在梯形ABCD中,AD∥BC,E為BC的中點,BC=2AD,EA=ED=2,AC與ED相交于點F.(1)求證:梯形ABCD是等腰梯形;(2)當(dāng)AB與AC具有什么位置關(guān)系時,四邊形AECD是菱形?請說明理由,并求出此時菱形AECD的面積.56.(2012?湘西州)如圖,O是菱形ABCD對角線AC與BD的交點,CD=5cm,OD=3cm;過點C作CE∥DB,過點B作BE∥AC,CE與BE相交于點E.(1)求OC的長;(2)求證:四邊形OBEC為矩形;(3)求矩形OBEC的面積.57.(2012?蘇州)如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延伸線段CB到E,使BE=AD,銜接AE、AC.(1)求證:△ABE≌△CDA;(2)若∠DAC=40°,求∠EAC的度數(shù).58.(2012?呼倫貝爾)如圖,在△ABC中,點D是邊BC的中點,DE⊥AC、DF⊥AB,垂足分離是E、F,且BF=CE.(1)求證:DE=DF;(2)當(dāng)∠A=90°時,試判斷四邊形AFDE是怎樣的四邊形,并證實你的結(jié)論.59.(2012?鄂爾多斯)已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延伸線于點E,且AE=AC,連AG.(1)求證:FC=BE;(2)若AD=DC=2,求AG的長.60.(2012?濱州)我們知道“銜接三角形兩邊中點的線段叫三角形的中位線”,“三角形的中位線平行于三角形的第三邊,且等于第三邊的一半”.類似的,我們把銜接梯形兩腰中點的線段叫做梯形的中位線.如圖,在梯形ABCD中,AD∥BC,點E,F(xiàn)分離是AB,CD的中點,那么EF就是梯形ABCD的中位線.通過看見、測量,預(yù)測EF和AD、BC有怎樣的位置和數(shù)量關(guān)系?并證實你的結(jié)論.

中考數(shù)學(xué)提分沖刺真題精析:四邊形參考答案與試題解析一、解答題(共60小題)1.(2014?遵義)如圖,?ABCD中,BD⊥AD,∠A=45°,E、F分離是AB,CD上的點,且BE=DF,銜接EF交BD于O.(1)求證:BO=DO;(2)若EF⊥AB,延伸EF交AD的延伸線于G,當(dāng)FG=1時,求AD的長.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);等腰直角三角形.菁優(yōu)網(wǎng)版權(quán)所有分析:(1)通過證實△ODF與△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因為EF⊥AB,得出∠G=45°,所以△ODG與△DFG都是等腰直角三角形,從而求得DG的長和EF=2,然后平行線分線段成比例定理即可求得.解答:(1)證實:∵四邊形ABCD是平行四邊形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF與△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=2,點評:本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),平行線的性質(zhì)以及平行線分行段定理.2.(2014?鎮(zhèn)江)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.(1)求證:∠1=∠2;(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.考點:菱形的判定;線段垂直平分線的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)證實△ADC≌△ABC后利用全等三角形的對應(yīng)角相等證得結(jié)論;(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.解答:(1)證實:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四邊形BCDE是菱形;證實:∵∠1=∠2,CD=BC,∴AC垂直平分BD,∵OE=OC,∴四邊形DEBC是平行四邊形,∵AC⊥BD,∴四邊形DEBC是菱形.點評:本題考查了菱形的判定及線段的垂直平分線的性質(zhì),解題的關(guān)鍵是了解菱形的判定主意,難度不大.3.(2014?云南)如圖,在平行四邊形ABCD中,∠C=60°,M、N分離是AD、BC的中點,BC=2CD.(1)求證:四邊形MNCD是平行四邊形;(2)求證:BD=MN.考點:平行四邊形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)按照平行四邊形的性質(zhì),可得AD與BC的關(guān)系,按照MD與NC的關(guān)系,可得證實結(jié)論;(2)按照按照等邊三角形的判定與性質(zhì),可得∠DNC的度數(shù),按照三角形外角的性質(zhì),可得∠DBC的度數(shù),按照正切函數(shù),可得答案.解答:證實:(1)∵ABCD是平行四邊形,∴AD=BC,AD∥BC,∵M、N分離是AD、BC的中點,∴MD=NC,MD∥NC,∴MNCD是平行四邊形;(2)如圖:銜接ND,∵MNCD是平行四邊形,∴MN=DC.∵N是BC的中點,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等邊三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.點評:本題考查了平行四邊形的判定與性質(zhì),利用了一組對邊平行且相等的四邊形是平行四邊形,等邊三角形的判定與性質(zhì),正切函數(shù).4.(2014?鹽城)如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點O作一條直線分離交DA、BC的延伸線于點E、F,銜接BE、DF.(1)求證:四邊形BFDE是平行四邊形;(2)若EF⊥AB,垂足為M,tan∠MBO=,求EM:MF的值.考點:菱形的性質(zhì);平行四邊形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照兩直線平行,內(nèi)錯角相等可得∠AEO=∠CFO,然后利用“角角邊”證實△AEO和△CFO全等,按照全等三角形對應(yīng)邊相等可得OE=OF,再按照對角線互相平分的四邊形是平行四邊形證實即可;(2)設(shè)OM=x,按照∠MBO的正切值表示出BM,再按照△AOM和△OBM相似,利用相似三角形對應(yīng)邊成比例求出AM,然后按照△AEM和△BFM相似,利用相似三角形對應(yīng)邊成比例求解即可.解答:(1)證實:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴OE=OF,又∵OB=OD,∴四邊形BFDE是平行四邊形;(2)解:設(shè)OM=x,∵EF⊥AB,tan∠MBO=,∴BM=2x,又∵AC⊥BD,∴∠AOM=∠OBM,∴△AOM∽△OBM,∴=,∴AM==x,∵AD∥BC,∴△AEM∽△BFM,∴EM:FM=AM:BM=x:2x=1:4.點評:本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),銳角三角函數(shù)的定義,難點在于(2)兩次求出三角形相似.5.(2014?雅安)如圖:在?ABCD中,AC為其對角線,過點D作AC的平行線與BC的延伸線交于E.(1)求證:△ABC≌△DCE;(2)若AC=BC,求證:四邊形ACED為菱形.考點:菱形的判定;全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)利用AAS判定兩三角形全等即可;(2)首先證得四邊形ACED為平行四邊形,然后證得AC=AD,利用鄰邊相等的平行四邊形是菱形判定即可.解答:證實:(1)∵四邊形ABCD為平行四邊形,∴AB∥CD,AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC與△DCE中,,∴△ABC≌△DCE;(2)∵平行四邊形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED為平行四邊形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四邊形ACED為菱形.點評:本題考查了菱形的判定等知識,解題的關(guān)鍵是熟練控制菱形的判定定理,難度不大.6.(2014?宿遷)如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點P從點B開始沿折線BC﹣CD﹣DA以1cm/s的速度運動到點A.設(shè)點P運動的時光為t(s),△PAB面積為S(cm2).(1)當(dāng)t=2時,求S的值;(2)當(dāng)點P在邊DA上運動時,求S關(guān)于t的函數(shù)表達式;(3)當(dāng)S=12時,求t的值.考點:直角梯形;動點問題的函數(shù)圖象.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題;動點型.分析:(1)當(dāng)t=2時,可求出P運動的路程即BP的長,再按照三角形的面積公式計算即可;(2)當(dāng)點P在DA上運動時,過D作DH⊥AB,P′M⊥AB,求出P′M的值即為△PAB中AB邊上的高,再利用三角形的面積公式計算即可;(3)當(dāng)S=12時,則P在BC或AD上運動,利用(1)和(2)中的面積和高的關(guān)系求出此時的t即可,解答:解:(1)∵動點P以1cm/s的速度運動,∴當(dāng)t=2時,BP=2cm,∴S的值=AB?BP=×8×2=8cm2;(2)過D作DH⊥AB,過P′作P′M⊥AB,∴P′M∥DH,∴△AP′M∽△ADH,∴,∵AB=8cm,CD=5cm,∴AH=AB﹣DC=3cm,∵BC=4cm,∴AD==5cm,又∵A′P=14﹣t,∴,∴P′M=,∴S=AB?P′M=,即S關(guān)于t的函數(shù)表達式S=;(3)由題意可知當(dāng)P在CD上運動時,S=AB×BC=×8×4=16cm2,所以當(dāng)S=12時,P在BC或AD上,當(dāng)P在BC上時,12=×8?t,解得:t=3;當(dāng)P在AD上時,12=,解得:t=.∴當(dāng)S=12時,t的值為3或.點評:本題考查了直角梯形的性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理的運用和三角形面積公式的運用,題目的綜合性較強,難度中等,對于動點問題異常要注重的是分類研究數(shù)學(xué)思想的運用.7.(2014?新疆)如圖,已知△ABC,按如下步驟作圖:①分離以A,C為圓心,大于AC的長為半徑畫弧,兩弧交于P,Q兩點;②作直線PQ,分離交AB,AC于點E,D,銜接CE;③過C作CF∥AB交PQ于點F,銜接AF.(1)求證:△AED≌△CFD;(2)求證:四邊形AECF是菱形.考點:菱形的判定;全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)由作圖知:PQ為線段AC的垂直平分線,從而得到AE=CE,AD=CD,然后按照CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得兩三角形全等即可;(2)按照全等得到AE=CF,然后按照EF為線段AC的垂直平分線,得到EC=EA,F(xiàn)C=FA,從而得到EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形.解答:解:(1)由作圖知:PQ為線段AC的垂直平分線,∴AE=CE,AD=CD,∵CF∥AB∴∠EAC=∠FCA,∠CFD=∠AED,在△AED與△CFD中,,∴△AED≌△CFD;(2)∵△AED≌△CFD,∴AE=CF,∵EF為線段AC的垂直平分線,∴EC=EA,F(xiàn)C=FA,∴EC=EA=FC=FA,∴四邊形AECF為菱形.點評:本題考查了菱形的判定、全等的判定與性質(zhì)及基本作圖,解題的關(guān)鍵是了解通過作圖能得到直線的垂直平分線.8.(2014?襄陽)如圖,在正方形ABCD中,AD=2,E是AB的中點,將△BEC繞點B逆時針旋轉(zhuǎn)90°后,點E落在CB的延伸線上點F處,點C落在點A處.再將線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,銜接EF,CG.(1)求證:EF∥CG;(2)求點C,點A在旋轉(zhuǎn)過程中形成的,與線段CG所圍成的陰影部分的面積.考點:正方形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理;扇形面積的計算.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照正方形的性質(zhì)可得AB=BC=AD=2,∠ABC=90°,再按照旋改變化只改變圖形的位置不改變圖形的形狀可得△ABF和△CBE全等,按照全等三角形對應(yīng)角相等可得∠FAB=∠ECB,∠ABF=∠CBE=90°,全等三角形對應(yīng)邊相等可得AF=EC,然后求出∠AFB+∠FAB=90°,再求出∠CFG=∠FAB=∠ECB,按照內(nèi)錯角相等,兩直線平行可得EC∥FG,再按照一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形EFGC是平行四邊形,然后按照平行四邊形的對邊平行證實;(2)求出FE、BE的長,再利用勾股定理列式求出AF的長,按照平行四邊形的性質(zhì)可得△FEC和△CGF全等,從而得到S△FEC=S△CGF,再按照S陰影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG列式計算即可得解.解答:(1)證實:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC繞點B逆時針旋轉(zhuǎn)90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,∴∠AFB+∠FAB=90°,∵線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=CE,AF=FG,∴EC=FG,∴四邊形EFGC是平行四邊形,∴EF∥CG;(2)解:∵AD=2,E是AB的中點,∴BF=BE=AB=×2=1,∴AF===,由平行四邊形的性質(zhì),△FEC≌△CGF,∴S△FEC=S△CGF,∴S陰影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG,=+×2×1+×(1+2)×1﹣,=﹣.點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),旋改變換的性質(zhì),勾股定理的應(yīng)用,扇形的面積計算,綜合題,但難度不大,熟記各性質(zhì)并確切識圖是解題的關(guān)鍵.9.(2014?湘西州)如圖,在?ABCD中,點E、F分離在邊BC和AD上,且BE=DF.(1)求證:△ABE≌△CDF;(2)求證:AE=CF.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照平行四邊形的性質(zhì)得出AB=CD,∠B=∠D,按照SAS證出△ABE≌△CDF;(2)按照全等三角形的對應(yīng)邊相等即可證得.解答:證實:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴AE=CF.點評:本題主要考查對平行四邊形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和控制,能按照性質(zhì)證出△ABE≌△CDF是證此題的關(guān)鍵.10.(2014?濰坊)如圖1,在正方形ABCD中,E、F分離為BC、CD的中點,銜接AE、BF,交點為G.(1)求證:AE⊥BF;(2)將△BCF沿BF對折,得到△BPF(如圖2),延伸FP到BA的延伸線于點Q,求sin∠BQP的值;(3)將△ABE繞點A逆時針方向旋轉(zhuǎn),使邊AB正巧落在AE上,得到△AHM(如圖3),若AM和BF相交于點N,當(dāng)正方形ABCD的面積為4時,求四邊形GHMN的面積.考點:四邊形綜合題.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)運用Rt△ABE≌Rt△BCF,再利用角的關(guān)系求得∠BGE=90°求證;(2)△BCF沿BF對折,得到△BPF,利用角的關(guān)系求出QF=QB,解出BP,QP求解;(3)先求出正方形的邊長,再按照面積比等于相似邊長比的平方,求得S△AGN=,再利用S四邊形GHMN=S△AHM﹣S△AGN求解.解答:(1)證實:如圖1,∵E,F(xiàn)分離是正方形ABCD邊BC,CD的中點,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如圖2,按照題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),則PB=2k在Rt△BPQ中,設(shè)QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面積為4,∴邊長為2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四邊形GHMN=S△AHM﹣S△AGN=1﹣=,∴四邊形GHMN的面積是.點評:本題主要考查了四邊形的綜合題,解決的關(guān)鍵是明確三角形翻轉(zhuǎn)后邊的大小不變,找準(zhǔn)對應(yīng)邊,角的關(guān)系求解.11.(2014?泰州)如圖,BD是△ABC的角平分線,點E,F(xiàn)分離在BC、AB上,且DE∥AB,EF∥AC.(1)求證:BE=AF;(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.考點:平行四邊形的判定與性質(zhì);角平分線的性質(zhì);等腰三角形的判定與性質(zhì);含30度角的直角三角形.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何圖形問題.分析:(1)由DE∥AB,EF∥AC,可證得四邊形ADEF是平行四邊形,∠ABD=∠BDE,又由BD是△ABC的角平分線,易得△BDE是等腰三角形,即可證得結(jié)論;(2)首先過點D作DG⊥AB于點G,過點E作EH⊥BD于點H,易求得DG與DE的長,繼而求得答案.解答:(1)證實:∵DE∥AB,EF∥AC,∴四邊形ADEF是平行四邊形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:過點D作DG⊥AB于點G,過點E作EH⊥BD于點H,∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DG=BD=×6=3,∵BE=DE,∴BH=DH=BD=3,∴BE==2,∴DE=BE=2,∴四邊形ADEF的面積為:DE?DG=6.點評:此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)等知識.此題難度適中,注重控制輔助線的作法,注重控制數(shù)形結(jié)合思想的應(yīng)用.12.(2014?臺州)如圖1是某公交汽車擋風(fēng)玻璃的雨刮器,其工作原理如圖2.雨刷EF⊥AD,垂足為A,AB=CD且AD=BC,這樣能使雨刷EF在運動時,一直垂直于玻璃窗下沿BC,請證實這一結(jié)論.考點:平行四邊形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題.分析:首先證實四邊形ABCD是平行四邊形,然后按照平行四邊形的性質(zhì)即可判斷.解答:證實:∵AB=CD、AD=BC,∴四邊形ABCD是平行四邊形,∴AD∥BC,又∵EF⊥AD,∴EF⊥BC.點評:本題考查了平行四邊形的判定與性質(zhì),準(zhǔn)確理解平行四邊形的判定主意是關(guān)鍵.13.(2014?遂寧)已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延伸線于點F,連結(jié)DF.求證:(1)△ODE≌△FCE;(2)四邊形ODFC是菱形.考點:矩形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)按照兩直線平行,內(nèi)錯角相等可得∠ODE=∠FCE,按照線段中點的定義可得CE=DE,然后利用“角邊角”證實△ODE和△FCE全等;(2)按照全等三角形對應(yīng)邊相等可得OD=FC,再按照一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形ODFC是平行四邊形,按照矩形的對角線互相平分且相等可得OC=OD,然后按照鄰邊相等的平行四邊形是菱形證實即可.解答:證實:(1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中點,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四邊形ODFC是平行四邊形,在矩形ABCD中,OC=OD,∴四邊形ODFC是菱形.點評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),菱形的判定,熟記各性質(zhì)與平行四邊形和菱形的判定主意是解題的關(guān)鍵.14.(2014?隨州)已知:如圖,在矩形ABCD中,M、N分離是邊AD、BC的中點,E、F分離是線段BM、CM的中點.(1)求證:△ABM≌△DCM;(2)填空:當(dāng)AB:AD=1:2時,四邊形MENF是正方形.考點:矩形的性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的判定;正方形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何圖形問題.分析:(1)按照矩形性質(zhì)得出AB=DC,∠A=∠D=90°,按照全等三角形的判定推出即可;(2)求出四邊形MENF是平行四邊形,求出∠BMC=90°和ME=MF,按照正方形的判定推出即可.解答:(1)證實:∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M為AD的中點,∴AM=DM,在△ABM和△DCM中∴△ABM≌△DCM(SAS).(2)解:當(dāng)AB:AD=1:2時,四邊形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四邊形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分離是BC、BM、CM的中點,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四邊形MENF是平行四邊形,∵ME=MF,∠BMC=90°,∴四邊形MENF是正方形,即當(dāng)AB:AD=1:2時,四邊形MENF是正方形,故答案為:1:2.點評:本題考查了矩形的性質(zhì)和判定,平行四邊形的判定,正方形的判定,全等三角形的性質(zhì)和判定,三角形的中位線的應(yīng)用,主要考查學(xué)生運用定理舉行推理的能力,題目比較好,難度適中.15.(2014?深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)證實四邊形ABDF是平行四邊形;(2)若AF=DF=5,AD=6,求AC的長.考點:平行四邊形的判定;線段垂直平分線的性質(zhì);勾股定理.菁優(yōu)網(wǎng)版權(quán)所有分析:(1)先證得△ADB≌△CDB求得∠BCD=∠BAD,從而得到∠ADF=∠BAD,所以AB∥FD,因為BD⊥AC,AF⊥AC,所以AF∥BD,即可證得.(2)先證得平行四邊形是菱形,然后按照勾股定理即可求得.解答:(1)證實:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB與△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四邊形ABDF是平行四邊形,(2)解:∵四邊形ABDF是平行四邊形,AF=DF=5,∴?ABDF是菱形,∴AB=BD=5,∵AD=6,設(shè)BE=x,則DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.點評:本題考查了平行四邊形的判定,菱形的判定和性質(zhì)以及勾股定理的應(yīng)用.16.(2014?欽州)如圖,在正方形ABCD中,E、F分離是AB、BC上的點,且AE=BF.求證:CE=DF.考點:正方形的性質(zhì);全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:按照正方形的性質(zhì)可得AB=BC=CD,∠B=∠BCD=90°,然后求出BE=CF,再利用“邊角邊”證實△BCE和△CDF全等,按照全等三角形對應(yīng)邊相等證實即可.解答:證實:在正方形ABCD中,AB=BC=CD,∠B=∠BCD=90°,∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),熟記性質(zhì)并決定出三角形全等的條件是解題的關(guān)鍵.17.(2014?攀枝花)如圖,在梯形OABC中,OC∥AB,OA=CB,點O為坐標(biāo)原點,且A(2,﹣3),C(0,2).(1)求過點B的雙曲線的解析式;(2)若將等腰梯形OABC向右平移5個單位,問平移后的點C是否落在(1)中的雙曲線上?并簡述理由.考點:等腰梯形的性質(zhì);反比例函數(shù)圖象上點的坐標(biāo)特征;待定系數(shù)法求反比例函數(shù)解析式;坐標(biāo)與圖形變化-平移.菁優(yōu)網(wǎng)版權(quán)所有專題:數(shù)形結(jié)合;待定系數(shù)法.分析:(1)過點C作CD⊥AB于D,按照等腰梯形的性質(zhì)和點A的坐標(biāo)求出CD、BD,然后求出點B的坐標(biāo),設(shè)雙曲線的解析式為y=(k≠0),然后利用待定系數(shù)法求反比例函數(shù)解析式解答;(2)按照向右平移橫坐標(biāo)加求出平移后的點C的坐標(biāo),再按照反比例函數(shù)圖象上點的坐標(biāo)特征判斷.解答:解:(1)如圖,過點C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴點B的坐標(biāo)為(2,5),設(shè)雙曲線的解析式為y=(k≠0),則=5,解得k=10,∴雙曲線的解析式為y=;(2)平移后的點C落在(1)中的雙曲線上.理由如下:點C(0,2)向右平移5個單位后的坐標(biāo)為(5,2),當(dāng)x=5時,y==2,∴平移后的點C落在(1)中的雙曲線上.點評:本題考查了等腰梯形的性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點的坐標(biāo)特征,坐標(biāo)與圖形變化﹣平移,熟練控制等腰梯形的性質(zhì)并求出點B的坐標(biāo)是解題的關(guān)鍵.18.(2014?寧德)如圖,在梯形ABCD中,AD∥BC,點E是BC的中點,銜接AC,DE,AC=AB,DE∥AB.求證:四邊形AECD是矩形.考點:矩形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:先判斷四邊形AECD為平行四邊形,然后由∠AEC=90°即可判斷出四邊形AECD是矩形.解答:證實:∵AD∥BC,DE∥AB,∴四邊形ABED是平行四邊形.∴AD=BE.∵點E是BC的中點,∴EC=BE=AD.∴四邊形AECD是平行四邊形.∵AB=AC,點E是BC的中點,∴AE⊥BC,即∠AEC=90°.∴?AECD是矩形.點評:本題考查了梯形和矩形的判定,難度適中,解題關(guān)鍵是控制平行四邊形和矩形的判定定理.19.(2014?牡丹江)如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,銜接CD、BE.(1)求證:CE=AD;(2)當(dāng)D在AB中點時,四邊形BECD是什么異常四邊形?說明你的理由;(3)若D為AB中點,則當(dāng)∠A的大小滿意什么條件時,四邊形BECD是正方形?請說明你的理由.考點:正方形的判定;平行四邊形的判定與性質(zhì);菱形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)先求出四邊形ADEC是平行四邊形,按照平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,按照菱形的判定推出即可;(3)求出∠CDB=90°,再按照正方形的判定推出即可.解答:(1)證實:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四邊形ADEC是平行四邊形,∴CE=AD;(2)解:四邊形BECD是菱形,理由是:∵D為AB中點,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四邊形BECD是平行四邊形,∵∠ACB=90°,D為AB中點,∴CD=BD,∴四邊形BECD是菱形;(3)當(dāng)∠A=45°時,四邊形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D為BA中點,∴CD⊥AB,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,即當(dāng)∠A=45°時,四邊形BECD是正方形.點評:本題考查了正方形的判定、平行四邊形的性質(zhì)和判定,菱形的判定,直角三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生運用定理舉行推理的能力.20.(2014?梅州)如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延伸線上一點,且DF=BE.(1)求證:CE=CF;(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?考點:正方形的性質(zhì);全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因為DF=BE,所以可證出GE=BE+GD成立.解答:(1)證實:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.點評:本題主要考查證兩條線段相等往往轉(zhuǎn)化為證實這兩條線段所在三角形全等的思想,在第二問中也是考查了通過全等找出和GE相等的線段,從而證出關(guān)系是不是成立.21.(2014?龍巖)如圖,我們把依次銜接隨意四邊形ABCD各邊中點所得四邊形EFGH叫中點四邊形.(1)若四邊形ABCD是菱形,則它的中點四邊形EFGH一定是B;A.菱形B.矩形C.正方形D.梯形(2)若四邊形ABCD的面積為S1,中點四邊形EFGH的面積記為S2,則S1與S2的數(shù)量關(guān)系是S1=2S2;(3)在四邊形ABCD中,沿中點四邊形EFGH的其中三邊剪開,可得三個小三角形,將這三個小三角形與原圖中未剪開的小三角形拼接成一個平行四邊形,請畫出一種拼接暗示圖,并寫出對應(yīng)全等的三角形.考點:中點四邊形;作圖—應(yīng)用與設(shè)計作圖.菁優(yōu)網(wǎng)版權(quán)所有專題:探索型.分析:(1)銜接AC、BD.先按照三角形中位線的性質(zhì)得出EH∥BD∥FG,EF∥AC∥HG,EH=FG=BD,EF=HG=AC,則四邊形EFGH為平行四邊形,再由菱形的對角線互相垂直,得出EF⊥FG,從而證實?EFGH是矩形;(2)由E為AB中點,且EF平行于AC,EH平行于BD,得到△BEK與△ABM相似,△AEN與△ABM相似,利用面積之比等于相似比的平方,得到△EBK面積與△ABM面積之比為1:4,且△AEN與△EBK面積相等,進而決定出四邊形EKMN面積為△ABM的一半,同理得到四邊形MKFP面積為△MBC面積的一半,四邊形QMPG面積為△DMC面積的一半,四邊形MNHQ面積為△ADM面積的一半,四個四邊形面積之和即為四個三角形面積之和的一半,即為四邊形ABCD面積的一半;(3)利用中點四邊形的性質(zhì)得出拼接主意,進而得出全等三角形.解答:解:(1)如圖1,銜接AC、BD.∵E、F、G、H分離是菱形ABCD各邊的中點,∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=BD,EF=HG=AC,∴四邊形EFGH為平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴EF⊥FG,∴?EFGH是矩形;故選:B.(2)如圖2,設(shè)AC與EH、FG分離交于點N、P,BD與EF、HG分離交于點K、Q,∵E是AB的中點,EF∥AC,EH∥BD,∴△EBK∽△ABM,△AEN∽△EBK,∴=,S△AEN=S△EBK,∴=,同理可得=,=,=,∴=,∴四邊形ABCD的面積為S1,中點四邊形EFGH的面積記為S2,則S1與S2的數(shù)量關(guān)系是S1=2S2;(3)如圖3,四邊形NEHM是平行四邊形;△MAH≌△GDH,△NAE≌△FBE,△CFG≌△ANM.點評:此題主要考查了中點四邊形以及相似三角形的判定與性質(zhì)和矩形的判定以及菱形的性質(zhì)等知識,利用三角形中位線的性質(zhì)得出是解題關(guān)鍵.22.(2014?涼山州)如圖,分離以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,銜接DF.(1)試說明AC=EF;(2)求證:四邊形ADFE是平行四邊形.考點:平行四邊形的判定;全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因為△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證實△AFE≌△BCA,再按照全等三角形的性質(zhì)即可證實AC=EF;(2)按照(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再按照平行四邊形的判定定理即可證實四邊形ADFE是平行四邊形.解答:證實:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四邊形ADFE是平行四邊形.點評:此題是首先利用等邊三角形的性質(zhì)證實全等三角形,然后利用全等三角形的性質(zhì)和等邊三角形的性質(zhì)證實平行四邊形.23.(2014?連云港)如圖,矩形ABCD的對角線AC、BD相交于點O,DE∥AC,CE∥BD.(1)求證:四邊形OCED為菱形;(2)銜接AE、BE,AE與BE相等嗎?請說明理由.考點:矩形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何圖形問題.分析:(1)首先利用平行四邊形的判定得出四邊形DOCE是平行四邊形,進而利用矩形的性質(zhì)得出DO=CO,即可得出答案;(2)利用等腰三角形的性質(zhì)以及矩形的性質(zhì)得出AD=BC,∠ADE=∠BCE,進而利用全等三角形的判定得出.解答:(1)證實:∵DE∥AC,CE∥BD,∴四邊形DOCE是平行四邊形,∵矩形ABCD的對角線AC、BD相交于點O,∴OC=AC=BD=OD,∴四邊形OCED為菱形;(2)解:AE=BE.理由:∵四邊形OCED為菱形,∴ED=CE,∴∠EDC=∠ECD,∴∠ADE=∠BCE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴AE=BE.點評:此題主要考查了矩形的性質(zhì)以及菱形的判定和全等三角形的判定與性質(zhì)等知識,熟練控制矩形的性質(zhì)進而得出對應(yīng)線段關(guān)系是解題關(guān)鍵.24.(2014?樂山)如圖,在△ABC中,AB=AC,四邊形ADEF是菱形,求證:BE=CE.考點:菱形的性質(zhì);全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:按照四邊形ADEF是菱形,得DE=EF,AB∥EF,DE∥AC可證實△DBE≌△FCE,即可得出BE=CE.解答:證實:∵四邊形ADEF是菱形,∴DE=EF,AB∥EF,DE∥AC,∴∠C=∠BED,∠B=∠CEF,∵AB=AC,∴∠B=∠C,∴∠BED=∠CEF,在△DBE和△FCE中,,∴△DBE≌△FCE,∴BE=CE.點評:本題考查了菱形的性質(zhì)以及全等三角形的判定和性質(zhì),是基礎(chǔ)題,比較容易.25.(2014?樂山)如圖,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足為點E.若AD=1,AB=2,求CE的長.考點:矩形的判定與性質(zhì);含30度角的直角三角形;銳角三角函數(shù)的定義.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何圖形問題.分析:過點A作AH⊥BC于H,利用銳角三角函數(shù)關(guān)系得出BH的長,進而得出BC的長,再按照含30°角的直角三角形的性質(zhì)即可得出CE的長.解答:解:過點A作AH⊥BC于H,則AD=HC=1,在△ABH中,∠B=30°,AB=2,∴cos30°=,即BH=ABcos30°=2×=3,∴BC=BH+HC=4,∵CE⊥AB,∴CE=BC=2.點評:此題主要考查了銳角三角函數(shù)關(guān)系應(yīng)用以及直角三角形中30°所對的邊等于斜邊的一半等知識,得出BH的長是解題關(guān)鍵.26.(2014?黃石)如圖,A、B是圓O上的兩點,∠AOB=120°,C是的中點.(1)求證:AB平分∠OAC;(2)延伸OA至P,使得OA=AP,銜接PC,若圓O的半徑R=1,求PC的長.考點:菱形的判定與性質(zhì);等邊三角形的判定與性質(zhì);圓心角、弧、弦的關(guān)系;圓周角定理.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)求出等邊三角形AOC和等邊△OBC,推出OA=OB=BC=AC,即可得出答案;(2)求出AC=OA=AP,求出∠PCO=90°,∠P=30°,即可求出答案.解答:(1)證實:銜接OC,∵∠AOB=120°,C是AB弧的中點,∴∠AOC=∠BOC=60°,∵OA=OC,∴△ACO是等邊三角形,∴OA=AC,同理OB=BC,∴OA=AC=BC=OB,∴四邊形AOBC是菱形,∴AB平分∠OAC;(2)解:銜接OC,∵△OAC是等邊三角形,OA=AC,∴AP=AC,∴∠APC=30°,∴△OPC是直角三角形,∴.點評:本題考查了圓心角、弧、弦之間的關(guān)系,勾股定理,等邊三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生運用定理舉行推理和計算的能力,題目比較典型,難度適中.27.(2014?葫蘆島)如圖,在△ABC中,AB=AC,點D(不與點B重合)在BC上,點E是AB的中點,過點A作AF∥BC交DE延伸線于點F,銜接AD,BF.(1)求證:△AEF≌△BED.(2)若BD=CD,求證:四邊形AFBD是矩形.考點:矩形的判定;全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)AAS或ASA證全等;(2)按照對角線互相平分的證實四邊形AFBD是平行四邊形,再按照等腰三角形三線合一證實∠ADB=90°,進而按照有一個角是直角的平行四邊形是矩形得證.解答:證實:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E為AB的中點,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴AD⊥BD,∴四邊形AFBD是矩形.點評:本題考查了矩形的判定,三角形全等的判定及性質(zhì),能夠了解矩形的判定定理是解答本題的關(guān)鍵,難度不大.28.(2014?賀州)如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.(1)求證:BE=DF;(2)求證:AF∥CE.考點:平行四邊形的判定與性質(zhì);全等三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:(1)利用平行四邊形的性質(zhì)得出∠5=∠3,∠AEB=∠4,進而利用全等三角形的判定得出即可;(2)利用全等三角形的性質(zhì)得出AE=CF,進而得出四邊形AECF是平行四邊形,即可得出答案.解答:證實:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四邊形AECF是平行四邊形,∴AF∥CE.點評:此題主要考查了平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)等知識,得出△ABE≌△CDF是解題關(guān)鍵.29.(2014?菏澤)已知:如圖,正方形ABCD,BM、DN分離平分正方形的兩個外角,且滿意∠MAN=45°,銜接MN.(1)若正方形的邊長為a,求BM?DN的值.(2)若以BM,DN,MN為三邊圍成三角形,試預(yù)測三角形的形狀,并證實你的結(jié)論.考點:正方形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理的逆定理;相似三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照角平分線的定義求出∠CBM=∠CDN=45°,再求出∠ABM=∠ADN=135°,然后按照正方形的每一個角都是90°求出∠BAM+∠NAD=45°,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和∠BAM+∠AMB=45°,從而得到∠NAD=∠AMB,再求出△ABM和△NDA相似,利用相似三角形對應(yīng)邊成比例列式求解即可;(2)過點A作AF⊥AN并截取AF=AN,銜接BF、FM,按照同角的余角相等求出∠1=∠3,然后利用“邊角邊”證實△ABF和△ADN全等,按照全等三角形對應(yīng)邊相等可得BF=DN,∠FBA=∠NDA=135°,再求出∠FAM=∠MAN=45°,然后利用“邊角邊”證實△AFM和△ANM全等,按照全等三角形對應(yīng)邊相等可得FM=NM,再求出△FBM是直角三角形,然后利用勾股定理判斷即可.解答:解:(1)∵BM、DN分離平分正方形的兩個外角,∴∠CBM=∠CDN=45°,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM+∠NAD=45°,在△ABM中,∠BAM+∠AMB=∠MBP=45°,∴∠NAD=∠AMB,在△ABM和△NDA中,,∴△ABM∽△NDA,∴=,∴BM?DN=AB?AD=a2;(2)以BM,DN,MN為三邊圍成的三角形為直角三角形.證實如下:如圖,過點A作AF⊥AN并截取AF=AN,銜接BF、FM,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴BF=DN,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM和△ANM中,,∴△AFM≌△ANM(SAS),∴FM=NM,∴∠FBP=180°﹣∠FBA=180°﹣135°=45°,∴∠FBP+∠PBM=45°+45°=90°,∴△FBM是直角三角形,∵FB=DN,F(xiàn)M=MN,∴以BM,DN,MN為三邊圍成的三角形為直角三角形.點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理逆定理,相似三角形的判定與性質(zhì),難點在于(2)作輔助線構(gòu)造出全等三角形和直角三角形.30.(2014?桂林)在?ABCD中,對角線AC、BD交于點O,過點O作直線EF分離交線段AD、BC于點E、F.(1)按照題意,畫出圖形,并標(biāo)上準(zhǔn)確的字母;(2)求證:DE=BF.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);作圖—復(fù)雜作圖.菁優(yōu)網(wǎng)版權(quán)所有專題:作圖題;證實題.分析:(1)按照題意直接畫圖即可;(2)由四邊形ABCD是平行四邊形,可得AD∥BC,OB=OD,繼而可利用ASA,判定△DOE≌△BOF,繼而證得DE=BF.解答:(1)解:如圖所示:(2)證實:∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴∠EDO=∠OBF,在△DOE和△BOF中,,∴DOE≌△BOF(ASA),∴DE=BF.點評:此題考查了平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì).此題難度不大,注重控制數(shù)形結(jié)合思想的應(yīng)用.31.(2014?貴陽)如圖,在Rt△ABC中,∠ACB=90°,D、E分離為AB,AC邊上的中點,銜接DE,將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,銜接AF,AC.(1)求證:四邊形ADCF是菱形;(2)若BC=8,AC=6,求四邊形ABCF的周長.考點:菱形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照旋轉(zhuǎn)可得AE=CE,DE=EF,可判定四邊形ADCF是平行四邊形,然后證實DF⊥AC,可得四邊形ADCF是菱形;(2)首先利用勾股定理可得AB長,再按照中點定義可得AD=5,按照菱形的性質(zhì)可得AF=FC=AD=5,進而可得答案.解答:(1)證實:∵將△ADE繞點E旋轉(zhuǎn)180°得到△CFE,∴AE=CE,DE=EF,∴四邊形ADCF是平行四邊形,∵D、E分離為AB,AC邊上的中點,∴DE是△ABC的中位線,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四邊形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB邊上的中點,∴AD=5,∵四邊形ADCF是菱形,∴AF=FC=AD=5,∴四邊形ABCF的周長為8+10+5+5=28.點評:此題主要考查了菱形的判定與性質(zhì),關(guān)鍵是控制菱形四邊相等,對角線互相垂直的平行四邊形是菱形.32.(2014?貴港)如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,銜接BE.(1)求證:DF=AE;(2)當(dāng)AB=2時,求BE2的值.考點:正方形的性質(zhì);角平分線的性質(zhì);勾股定理.菁優(yōu)網(wǎng)版權(quán)所有分析:(1)銜接CF,按照“HL”證實Rt△CDF和Rt△CEF全等,按照全等三角形對應(yīng)邊相等可得DF=EF,按照正方形的對角線平分一組對角可得∠EAF=45°,求出△AEF是等腰直角三角形,再按照等腰直角三角形的性質(zhì)可得AE=EF,然后等量代換即可得證;(2)按照正方形的對角線等于邊長的倍求出AC,然后求出AE,過點E作EH⊥AB于H,判斷出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式計算即可得解.解答:(1)證實:如圖,銜接CF,在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的對角線,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解:∵AB=2,∴AC=AB=2,∵CE=CD,∴AE=2﹣2,過點E作EH⊥AB于H,則△AEH是等腰直角三角形,∴EH=AH=AE=×(2﹣2)=2﹣,∴BH=2﹣(2﹣)=,在Rt△BEH中,BE2=BH2+EH2=()2+(2﹣)2=8﹣4.點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),勾股定理的應(yīng)用,作輔助線構(gòu)造出全等三角形和直角三角形是解題的關(guān)鍵.33.(2014?甘孜州)如圖,在?ABCD中,E,F(xiàn)分離為BC,AB中點,銜接FC,AE,且AE與FC交于點G,AE的延伸線與DC的延伸線交于點N.(1)求證:△ABE≌△NCE;(2)若AB=3n,F(xiàn)B=GE,試用含n的式子表示線段AN的長.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);相似三角形的判定與性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)按照平行四邊形的性質(zhì)可得AB∥CN,由此可知∠B=∠ECN,再按照全等三角形的判定主意ASA即可證實△ABE≌△NCE;(2)因為AB∥CN,所以△AFG∽△CNG,利用相似三角形的性質(zhì)和已知條件即可得到含n的式子表示線段AN的長.解答:(1)證實:∵四邊形ABCD是平行四邊形,∴AB∥CN,∴∠B=∠ECN,∵E是BC中點,∴BE=CE,在△ABE和△NCE中,,∴△ABE≌△NCE(ASA).(2)∵AB∥CN,∴△AFG∽△CNG,∴AF:CN=AG:GN,∵AB=CN,∴AF:AB=AG:GN,∵AB=3n,F(xiàn)為AB中點∴FB=GE,∴GE=n,∴=,解得AE=3n,∴AG=2n,GE=n,EN=3n,∴AN=AG+GE+EN=2n+n+3n=6n.點評:本題考查了平行四邊形的性質(zhì)、全等三角形的判定和性質(zhì)以及相似三角形的平和性質(zhì),題目的綜合性較強,難度中等.34.(2014?撫順)如圖,在矩形ABCD中,E是CD邊上的點,且BE=BA,以點A為圓心、AD長為半徑作⊙A交AB于點M,過點B作⊙A的切線BF,切點為F.(1)請判斷直線BE與⊙A的位置關(guān)系,并說明理由;(2)倘若AB=10,BC=5,求圖中陰影部分的面積.考點:矩形的性質(zhì);切線的判定與性質(zhì);扇形面積的計算.菁優(yōu)網(wǎng)版權(quán)所有專題:幾何綜合題.分析:(1)直線BE與⊙A的位置關(guān)系是相切,銜接AE,過A作AH⊥BE,過E作EG⊥AB,再證實AH=AD即可;(2)銜接AF,則圖中陰影部分的面積=直角三角形ABF的面積﹣扇形MAF的面積.解答:解:(1)直線BE與⊙A的位置關(guān)系是相切,理由如下:銜接AE,過A作AH⊥BE,過E作EG⊥AB,則四邊形ADEG是矩形.∵S△ABE=BE?AH=AB?EG,AB=BE,∴AH=EG,∵四邊形ADEG是矩形,∴AD=EG,∴AH=AD,∴BE是圓的切線;(2)銜接AF,∵BF是⊙A的切線,∴∠BFA=90°∵BC=5,∴AF=5,∵AB=10,∴∠ABF=30°,∴∠BAF=60°,∴BF=AF=5,∴圖中陰影部分的面積=直角三角形ABF的面積﹣扇形MAF的面積=×5×5﹣=.點評:本題考查了矩形的性質(zhì)、切線的判定和性質(zhì)、三角形和扇形面積公式的運用以及異常角的銳角三角函數(shù)值,題目的綜合性較強,難度不小,解題的關(guān)鍵是準(zhǔn)確做出輔助線.35.(2014?崇左)如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分離是AB,BC,CD,DA的中點,依次銜接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.考點:中點四邊形;三角形中位線定理.菁優(yōu)網(wǎng)版權(quán)所有專題:證實題.分析:首先利用三角形的中位線定理證得四邊形EFGH為平行四邊形,然后利用有一個角是直角的平行四邊形是矩形判定即可.解答:證實:∵點E、F、G、H分離是邊AB、BC、CD、DA的中點,∴EF=AC,GH=AC,∴EF=GH,同理EH=FG∴四邊形EFGH是平行四邊形;又∵對角線AC、BD互相垂直,∴EF與FG垂直.∴四邊形EFGH是矩形.點評:本題考查了中點四邊形的知識,解題的關(guān)鍵是靈便運用三角形的中位線定理,平行四邊形的判斷及矩形的判斷舉行證實,是一道綜合題.36.(2014?北京)如圖,在?ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,銜接EF,PD.(1)求證:四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考點:菱形的判定;平行四邊形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論