![結構動力學第III篇-碩士知識資料P17知識資料石巖_第1頁](http://file4.renrendoc.com/view11/M03/01/0E/wKhkGWXbOLWAJf1CAAB8kBpnAQE382.jpg)
![結構動力學第III篇-碩士知識資料P17知識資料石巖_第2頁](http://file4.renrendoc.com/view11/M03/01/0E/wKhkGWXbOLWAJf1CAAB8kBpnAQE3822.jpg)
![結構動力學第III篇-碩士知識資料P17知識資料石巖_第3頁](http://file4.renrendoc.com/view11/M03/01/0E/wKhkGWXbOLWAJf1CAAB8kBpnAQE3823.jpg)
![結構動力學第III篇-碩士知識資料P17知識資料石巖_第4頁](http://file4.renrendoc.com/view11/M03/01/0E/wKhkGWXbOLWAJf1CAAB8kBpnAQE3824.jpg)
![結構動力學第III篇-碩士知識資料P17知識資料石巖_第5頁](http://file4.renrendoc.com/view11/M03/01/0E/wKhkGWXbOLWAJf1CAAB8kBpnAQE3825.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PartIIIDistributed--ParameterSystems第III篇分布參數(shù)體系Chapter17Partialdifferentialequationsofmotion34567891011121314151617181920212223242526(1)國內教材(點擊閱讀)劉晶波、杜修力--結構動力學俞載道--結構動力學基礎于建華--高等結構動力學邱吉寶--計算結構動力學李明昭--橋梁結構動力分析
胡宗武--工程振動分析基礎胡兆同--結構振動與穩(wěn)定胡少偉--結構振動理論及其應用包世華--結構動力學彭俊生--結構動力學、抗震計算與SAP2000應用盛宏玉--結構動力學輔導與習題精解盛宏玉--結構動力學
(第二版)王光遠--應用分析動力學(2)Clough教材資料(點擊閱讀)克拉夫--結構動力學(81版)結構動力學(第2版)中文版克拉夫--DynamicsofStructure(英文原版)結構動力學習題詳解(Clough版)(3)Chopra教材資料(點擊閱讀)Chopra--結構動力學_理論及其在地震工程中的應用(第2版)(中文版)Chopra--DynamicsofStructures(4thEdition,英文原版)Chopra--(入門)結構動力學入門Chopra--(入門)DynamicsofStructures:APrimerChopra哈工大結構動力學講義結構動力學學習資料下載鏈接:/post/109.html272024/2/25蘭州理工大學土木工程學院韓建平3017--1INTRODUCTIONThediscrete--coordinatesystemsdescribedinPartTwoprovideaconvenientandpracticalapproachtothedynamicresponseanalysisofarbitrarystructures.However,thesolutionsobtainedcanonlyapproximatetheiractualdynamicbehaviorbecausethemotionsarerepresentedbyalimitednumberofdisplacementcoordinates.Theprecisionoftheresultscanbemadeasrefinedasdesiredbyincreasingthenumberofdegreesoffreedomconsideredintheanalyses.Inprinciple,however,aninfinitenumberofcoordinateswouldberequiredtoconvergetotheexactresultsforanyrealstructurehavingdistributedproperties;hencethisapproachtoobtaininganexactsolutionismanifestlyimpossible.Theformalmathematicalprocedureforconsideringthebehaviorofaninfinitenumberofconnectedpointsisbymeansofdifferentialequationsinwhichthepositioncoordinatesaretakenasindependentvariables.Inasmuchastimeisalsoanindependentvariableinadynamicresponseproblem,theformulationoftheequationsofmotioninthiswayleadstopartialdifferentialequations.Differentclassesofcontinuoussystemscanbeidentifiedinaccordancewiththenumberofindependentvariablesrequiredtodescribethedistributionoftheirphysicalproperties.Forexam-ple,thewave--propagationformulasusedinseismologyandgeophysicsarederivedfromtheequationsofmotionexpressedforgeneralthree--dimensionalsolids.Simi-larly,instudyingthedynamicbehaviorofthin-plateorthin--shellstructures,specialequationsofmotionmustbederivedforthesetwo--dimensionalsystems.Inthepresentdiscussion,however,attentionwillbelimitedtoone--dimensionalstructures,thatis,beam--androd--typesystemswhichmayhavevariablemass,damping,andstiffnesspropertiesalongtheirelasticaxes.Thepartialdifferentialequationsofthesesystemsinvolveonlytwoindependentvariables:timeanddistancealongtheelasticaxisofeachcomponentmember.Itispossibletoderivetheequationsofmotionforrathercomplexone--dimensionalstructures,includingassemblagesofmanymembersinthree-dimensionalspace.Moreover,theaxesoftheindividualmembersmightbearbitrarilycurvedinthree--dimensionalspace,andthephysicalpropertiesmightvaryasacomplicatedfunctionofpositionalongtheaxis.However,thesolutionsoftheequationsofmotionforsuchcomplexsystemsgenerallycanbeobtainedonlybynumericalmeans,andinmostcasesadiscrete--coordinateformulationispreferabletoacontinuous--coordinateformulation.Forthisreason,thepresenttreatmentwillbelimitedtosimplesystemsinvolvingmembershavingstraightelasticaxesandassemblagesofsuchmembers.Informulatingtheequationsofmotion,generalvariationsofthephysicalpropertiesalongeachaxiswillbepermitted,althoughinsubsequentsolutionsoftheseequations,thepropertiesofeachmemberwillbeassumedtobeconstant.Becauseoftheseseverelimitationsofthecaseswhichmaybeconsidered,thispresentationisintendedmainlytodemonstratethegeneralconceptsofthepartial--differential--equationformulationratherthantoprovideatoolforsignificantpracticalapplicationtocomplexsystems.Closedformsolutionsthroughthisformulationcan,however,beveryusefulwhentreatingsimpleuniformsystems.Chapter17PartialDifferentialEquationsofMotion17--2BeamFlexure:ElementaryCaseFIGURE17-1Basicbeamsubjectedtodynamicloading:(a)beampropertiesandcoordinates;(b)resultantforcesactingondifferentialelement.Afterdroppingthetwosecond--ordermomenttermsinvolvingtheinertiaandappliedloadings,onegetsThisisthepartialdifferentialequationofmotionfortheelementarycaseofbeamflexure.Thesolutionofthisequationmust,ofcourse,satisfytheprescribedboundaryconditionsatx=0andx=L.17--3BeamFlexure:IncludingAxial--ForceEffectsFIGURE17-2Beamwithstaticaxialloadinganddynamiclateralloading:(a)beamdeflectedduetoloadings;(b)resultantforcesactingondifferentialelement.17--4BeamFlexure:IncludingViscousDampingIntheprecedingformulationsofthepartialdifferentialequationsofmotionforbeam--typemembers,nodampingwasincluded.Nowdistributedviscousdampingoftwotypeswillbeincluded:(1)anexternaldampingforceperunitlengthasrepresentedbyc(x)inFig.8--3and(2)internalresistanceopposingthestrainvelocityasrepresentedbythesecondpartsofEqs.(8--8)and(8--9).17--6AXIALDEFORMATIONS:UNDAMPEDTheprecedingdiscussionsinSections17--2through17--5havebeenconcernedwithbeamflexure,inwhichcasethedynamicdisplacementsareinthedirectiontransversetotheelasticaxis.Whilethisbendingmechanismisthemostcommontypeofbehaviorencounteredinthedynamicanalysisofone--dimensionalmembers,someimportantcasesinvolveonlyaxialdisplacements,e.g.,apilesubjectedtohammerblowsduringthedrivingprocess.Theequationsofmotiongoverningsuchbehaviorcanbederivedbyaproceduresimilartothatusedindevelopingtheequationsofmotionforflexure.However,derivationissimplerfortheaxial--deformationcase,sinceequilibriumneedbeconsideredonlyinonedirectionratherthantwo.Inthisformulation,dampingisneglectedbecauseitusuallyhaslittleeffectonthebehaviorinaxialdeformation.FIGURE17-4Barsubjectedtodynamicaxialdeformations:(a)barpropertiesandcoordinates;(b)forcesactingondifferentialelement.Chapter18Analysisofundampedfreevibration18-1BEAMFLEXURE:ELEMENTARYCASEFollowingthesamegeneralapproachemployedwithdiscrete-parametersys-tems,thefirststepinthedynamic--responseanalysisofadistributed--parametersystemistoevaluateitsundampedmodeshapesandfrequencies.Becauseofthemathematicalcomplicationsoftreatingsystemshavingvariableproperties,thefollowingdiscussionwillbelimitedtobeamshavinguniformpropertiesalongtheirlengthsandtoframesassembledfromsuchmembers.Thisisnotaseriouslimitation,however,becauseitismoreefficienttotreatanyvariable--propertysystemsusingdiscrete-parametermodeling.(17-7)(18-1)(18-2)(18-3)First,letusconsidertheelementarycasepresentedinSection17--2withandsetequaltoconstantsand,respectively.AsshownbyEq.(17--7),thefree--vibrationequationofmotionforthissystemisExampleE18-1.SimpleBeamConsideringtheuniformsimplebeamshowninFig.E18-1a,itsfourknownboundaryconditionsareFIGUREE18-1Simplebeam-vibrationanalysis:(a)basicpropertiesofsimplebeam;(b)firstthreevibrationmodes.第五章無限自由度體系的振動分析5.1運動方程的建立一.彎曲振動方程微段平衡方程撓曲微分方程消去內力,得加慣性力,得運動方程二.考慮軸力對彎曲的影響時的彎曲振動方程三.考慮剪切變形與慣性力矩對彎曲的影響時的彎曲振動方程1.考慮剪切變形時的幾何方程桿軸轉角截面轉角2.慣性力矩的計算單位長度上的慣性力矩3.運動方程4.物理方程5.方程整理幾何方程:物理方程:運動方程:對于等截面桿:對于等截面細長桿:四.考慮阻尼影響時的彎曲振動方程外阻尼力內阻尼力1.粘滯阻尼
2.滯變阻尼不計阻尼時計阻尼時習題:1.求剪切桿的運動方程。
2.求拉壓桿的運動方程。一.運動方程及其解邊界條件xyxyxy幾何邊界條件力邊界條件混合邊界條件初始條件已知函數(shù)5.2自由振動分析設方程的特解為代入方程,得方程(1)的通解為運動方程的特解為運動方程的通解由特解的線性組合確定設方程(2)的特解為代入方程(2),得方程(2)的通解為或二.振型與頻率振型方程xy頻率方程振型18--4BEAMFLEXURE:ORTHOGONALITYOFVIBRATIONMODESHAPESThevibrationmodeshapesderivedforbeamswithdistributedpropertieshaveorthogonalityrelationshipsequivalenttothosedefinedpreviouslyforthediscrete-parametersystems,whichcanbedemonstratedinessentiallythesame—byapplicationofBetti'slaw.ConsiderthebeamshowninFig.18--1.Forthisdiscussion,thebeammayhavearbitrarilyvaryingstiffnessandmassalongitslength,anditcouldhavearbitrarysupportconditions,althoughonlysimplesupportsareshown.Twodifferentvibrationmodes,mandn,areshownforthebeam.Ineachmode,thedisplacedshapeandtheinertialforcesproducingthedisplacementsareindicated.Betti'slawappliedtothesetwodeflectionpatternsmeansthattheworkdonebytheinertialforcesofmodenactingonthedeflectionofmodemisequaltotheworkoftheforcesofmodemactingonthedisplacementofmoden;thatis,(18-31)(18-34)Thefirsttwotermsinthisequationrepresenttheworkdonebytheboundaryverticalsectionforcesofmodenactingontheenddisplacementsofmodemandtheworkdonebytheendmomentsofmodenonthecorrespondingrotationsofmodem.Forthestandardclamped--,hinged--,orfree--endconditions,thesetermswillvanish.However,theycontributetotheorthogonalityrelationshipifthebeamhaselasticsupportsorifithasalumpedmassatitsend;thereforetheymustberetainedintheexpressionwhenconsideringsuchcases.(18-35)(18-40)三.振型的正交性振型可看作是慣性力幅值作為靜荷載所引起的靜力位移曲線。由虛功互等定理振型對質量的正交性表達式物理意義為i振型上的慣性力在j振型上作的虛功為零。由變形體虛功定理振型對剛度的正交性表達式當體系中有質量塊、彈簧等時的情況Clough:振型對剛度的正交性表達式5.3受迫振動一.振型分解法設方程的解為運動方程為代入方程,得設注意到方程兩端乘以并積分----振型j的廣義質量----振型j的廣義荷載方程兩端乘以并積分----振型j的廣義質量----振型j的廣義荷載令----j振型阻尼比內力計算若外力是集中力或集中力偶例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。解:二.初速度、初位移引起的振動設初位移、初速度已知,求位移反應。設方程的解為由和確定例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:練習題:振型分解法求圖示體系桿端轉角的穩(wěn)態(tài)幅值,不計阻尼。三.簡諧荷載作用下的直接解法運動方程為設特解為若梁是等截面梁,且q(x)為常數(shù)令例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB6103T 41-2025玉米-小麥輪作機械化生產技術規(guī)范
- DB3715T 76-2025地理標志產品 冠縣鴨梨
- 個人小額借款合同模板全集
- 萬科地產租賃合同范本
- 2025年大型機械租賃服務合同
- 二手房買賣標準合同樣本
- 京東店鋪租賃合同模板
- 臨時借調合同模板(企業(yè)與員工)
- 個人汽車抵押合作合同書
- 嚴守合同底線共筑食品安全2025
- 施工現(xiàn)場人力資源施工機具材料設備等管理計劃
- 第八章《運動和力》達標測試卷(含答案)2024-2025學年度人教版物理八年級下冊
- 民辦幼兒園務工作計劃
- 2025年華僑港澳臺生聯(lián)招考試高考地理試卷試題(含答案詳解)
- 2025年市場拓展工作計劃
- 中國革命戰(zhàn)爭的戰(zhàn)略問題(全文)
- 《數(shù)學歸納法在中學解題中的應用研究》9000字(論文)
- 《大學英語四級詞匯大全》
- 第六章-1八綱辨證
- 《中國古典建筑》課件
- 2021年酒店餐飲傳菜員崗位職責與獎罰制度
評論
0/150
提交評論