山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省大同市重點中學(xué)2024年高三第二次調(diào)研數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形2.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生3.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.4.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.已知雙曲線的離心率為,拋物線的焦點坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.6.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=07.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+18.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.9.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.10.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.11.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.12.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,,,,為的中點,則點到平面的距離是______.14.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關(guān)于直線對稱,則雙曲線的離心率為__________.15.設(shè)等比數(shù)列的前項和為,若,則數(shù)列的公比是.16.在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動點,求點到直線距離的最小值及此時點的坐標(biāo).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當(dāng)m=7時,求函數(shù)f(x)的定義域;(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.18.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.19.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63521.(12分)△ABC的內(nèi)角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.22.(10分)如圖(1)五邊形中,,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.(1)求證:平面平面;(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當(dāng)時,為直角三角形;當(dāng)時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點睛】本題考查三角形形狀的判斷,考查正弦定理的運用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.2、C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.3、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.4、B【解析】

三視圖對應(yīng)的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時注意三視圖中的點線關(guān)系與幾何體中的點、線、面的對應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎(chǔ)題.5、A【解析】

求出拋物線的焦點坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.6、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進方程.屬于基礎(chǔ)題.7、C【解析】

首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時,等式左端=1+1+…+k1,當(dāng)n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./8、D【解析】

以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.9、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、常考題型.11、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.12、A【解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用等體積法求解點到平面的距離【詳解】由題在長方體中,,,所以,所以,設(shè)點到平面的距離為,解得故答案為:【點睛】此題考查求點到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點.14、【解析】

由點,關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因為為雙曲線:的左焦點,所以,又點,關(guān)于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質(zhì),先由兩點對稱,求出直線斜率,再由焦點坐標(biāo)求出直線方程,根據(jù)中點在直線上,即可求出結(jié)果,屬于??碱}型.15、.【解析】

當(dāng)q=1時,.當(dāng)時,,所以.16、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點到直線的距離公式,將問題轉(zhuǎn)化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設(shè)點.點到直線的距離.當(dāng)時,,所以點到直線的距離的最小值為.此時點的坐標(biāo)為.【點睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】試題分析:用零點分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設(shè)知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].18、(1)答案見解析(2)【解析】

(1)先對函數(shù)進行求導(dǎo)得,對分成和兩種情況討論,從而得到相應(yīng)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo)得,從而有,,,三個方程中利用得到.將不等式的左邊轉(zhuǎn)化成關(guān)于的函數(shù),再構(gòu)造新函數(shù)利用導(dǎo)數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當(dāng)時,則,故在上單調(diào)遞減;當(dāng)時,令,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述:當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設(shè),則,∴在上單調(diào)遞減;當(dāng)時,.∴,即所求的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想和數(shù)形結(jié)合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉(zhuǎn)化為單元問題,然后利用導(dǎo)數(shù)研究單變量函數(shù)的性質(zhì).19、(1),;(2)【解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時時有極小值.(2)可知,進而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時,;當(dāng)時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.20、(1)不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見解析,,【解析】

(1)計算再對照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計算3人或4人偶爾或不用信用卡的概率即可.②利用二項分布的特點求解變量的分布列、數(shù)學(xué)期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因為,所以不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機變量的分布列為:0123故隨機變量的數(shù)學(xué)期望為,方差為.【點睛】本題主要考查了獨立性檢驗以及超幾何分布與二項分布的知識點,包括分類討論以及二項分布的數(shù)學(xué)期望與方差公式等.屬于中檔題.21、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論