山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題含解析_第1頁
山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題含解析_第2頁
山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題含解析_第3頁
山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題含解析_第4頁
山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市嶗山區(qū)第三中學2023年九年級數學第一學期期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.從某多邊形的一個頂點出發(fā),可以作條對角線,則這個多邊形的內角和與外角和分別是()A.; B.; C.; D.;2.對于反比例函數,下列說法正確的是()A.的值隨值的增大而增大 B.的值隨值的增大而減小C.當時,的值隨值的增大而增大 D.當時,的值隨值的增大而減小3.三角形的兩邊長分別為3和2,第三邊的長是方程的一個根,則這個三角形的周長是()A.10 B.8或7 C.7 D.84.下列命題是真命題的是()A.在同圓或等圓中,等弧所對的圓周角相等B.平分弦的直徑垂直于弦C.在同圓或等圓中,等弦所對的圓周角相等D.三角形外心是三條角平分線的交點5.正比例函數y=2x和反比例函數的一個交點為(1,2),則另一個交點為()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)6.將拋物線向右平移1個單位,再向上平移3個單位,得到的拋物線是()A. B.C. D.7.拋物線可由拋物線如何平移得到的()A.先向左平移3個單位,再向下平移2個單位B.先向左平移6個單位,再向上平移7個單位C.先向上平移2個單位,再向左平移3個單位D.先回右平移3個單位,再向上平移2個單位8.如圖,⊙O的半徑為5,△ABC是⊙O的內接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為()A. B. C. D.9.某市從2017年開始大力發(fā)展“竹文化”旅游產業(yè).據統計,該市2017年“竹文化”旅游收入約為2億元.預計2019“竹文化”旅游收入達到2.88億元,據此估計該市2018年、2019年“竹文化”旅游收入的年平均增長率約為()A.2% B.4.4% C.20% D.44%10.如圖,正方形網格中,每個小正方形的邊長均為1個單位長度.,在格點上,現將線段向下平移個單位長度,再向左平移個單位長度,得到線段,連接,.若四邊形是正方形,則的值是()A.3 B.4 C.5 D.6二、填空題(每小題3分,共24分)11.某校去年投資2萬元購買實驗器材,預計今明2年的投資總額為8萬元.若該校這兩年購買的實驗器材的投資年平均增長率為x,則可列方程為_____.12.兩同學玩扔紙團游戲,在操場上固定了如下圖所示的矩形紙板,E為AD中點,且∠ABD=60°,每次紙團均落在紙板上,則紙團擊中陰影區(qū)域的概率是________.13.已知一元二次方程ax2+bx+c=0的兩根為﹣5和3,則二次函數y=ax2+bx+c圖象對稱軸是直線_____.14.如圖是甲、乙兩人同一地點出發(fā)后,路程隨時間變化的圖象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______時相遇;(3)路程為150千米時,甲行駛了______小時,乙行駛了______小時.15.不透明的口袋里有除顏色外其它均相同的紅、白、黑小球共計120個,玲玲通過多次摸球實驗后發(fā)現,摸到紅球和黑球的概率穩(wěn)定在和,那么口袋中白球的個數極有可能是_______個.16.邊長為4cm的正方形ABCD繞它的頂點A旋轉180°,頂點B所經過的路線長為(______)cm.17.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB、BD于M、N兩點,若AM=2,則線段ON的長為_____.18.計算:=_____________三、解答題(共66分)19.(10分)在平面直角坐標系中,點O(0,0),點A(﹣3,0).已知拋物線y=﹣x2+2mx+3(m為常數),頂點為P.(1)當拋物線經過點A時,頂點P的坐標為;(2)在(1)的條件下,此拋物線與x軸的另一個交點為點B,與y軸交于點C.點Q為直線AC上方拋物線上一動點.①如圖1,連接QA、QC,求△QAC的面積最大值;②如圖2,若∠CBQ=45°,請求出此時點Q坐標.20.(6分)綜合與探究:操作發(fā)現:如圖1,在中,,以點為中心,把順時針旋轉,得到;再以點為中心,把逆時針旋轉,得到.連接.則與的位置關系為平行;探究證明:如圖2,當是銳角三角形,時,將按照(1)中的方式,以點為中心,把順時針旋轉,得到;再以點為中心,把逆時針旋轉,得到.連接,①探究與的位置關系,寫出你的探究結論,并加以證明;②探究與的位置關系,寫出你的探究結論,并加以證明.21.(6分)如圖,是一張盾構隧道斷面結構圖.隧道內部為以O為圓心,AB為直徑的圓.隧道內部共分為三層,上層為排煙道,中間為行車隧道,下層為服務層.點A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)22.(8分)學校想知道九年級學生對我國倡導的“一帶一路”的了解程度,隨機抽取部分九年級學生進行問卷調查,問卷設有4個選項(每位被調查的學生必選且只選一項):A.非常了解.B.了解.C.知道一點.D.完全不知道.將調查的結果繪制如下兩幅不完整的統計圖,請根據兩幅統計圖中的信息,解答下列問題:(1)求本次共調查了多少學生?(2)補全條形統計圖;(3)該校九年級共有600名學生,請你估計“了解”的學生約有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.23.(8分)現有A、B兩個不透明袋子,分別裝有3個除顏色外完全相同的小球.其中,A袋裝有2個白球,1個紅球;B袋裝有2個紅球,1個白球.(1)將A袋搖勻,然后從A袋中隨機取出一個小球,求摸出小球是白色的概率;(2)小華和小林商定了一個游戲規(guī)則:從搖勻后的A,B兩袋中隨機摸出一個小球,摸出的這兩個小球,若顏色相同,則小林獲勝;若顏色不同,則小華獲勝.請用列表法或畫出樹狀圖的方法說明這個游戲規(guī)則對雙方是否公平.24.(8分)綜合與探究如圖,在平面直角坐標系中,點的坐標分別為,點在軸上,其坐標為,拋物線經過點為第三象限內拋物線上一動點.求該拋物線的解析式.連接,過點作軸交于點,當的周長最大時,求點的坐標和周長的最大值.若點為軸上一動點,點為平面直角坐標系內一點.當點構成菱形時,請直接寫出點的坐標.25.(10分)已知:如圖,拋物線與軸交于點,,與軸交于點.(1)求拋物線的解析式;(2)如圖,點是線段上方拋物線上的一個動點,連結、.設的面積為.點的橫坐標為.①試求關于的函數關系式;②請說明當點運動到什么位置時,的面積有最大值?③過點作軸的垂線,交線段于點,再過點做軸交拋物線于點,連結,請問是否存在點使為等腰直角三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.26.(10分)如圖,已知三個頂點的坐標分別為,在給出的平面直角坐標系中;(1)畫出繞點順時針旋轉后得到的;并直接寫出,的坐標;(2)計算線段旋轉到位置時掃過的圖形面積.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據邊形從一個頂點出發(fā)可引出條對角線,求出的值,再根據邊形的內角和為,代入公式就可以求出內角和,根據多邊形的外角和等于360,即可求解.【詳解】∵多邊形從一個頂點出發(fā)可引出4條對角線,

∴,

解得:,

∴內角和;任何多邊形的外角和都等于360.故選:A.【點睛】本題考查了多邊形的對角線,多邊形的內角和及外角和定理,是需要熟記的內容,比較簡單.求出多邊形的邊數是解題的關鍵.2、C【分析】根據反比例函數的增減性逐一分析即可.【詳解】解:在反比例函數中,﹣4<0∴反比例函數的圖象在二、四象限,且在每一象限內y隨x的增大而增大∴A選項缺少條件:在每一象限內,故A錯誤;B選項說法錯誤;C選項當時,反比例函數圖象在第四象限,y隨x的增大而增大,故C選項正確;D選項當時,反比例函數圖象在第二象限,y隨x的增大而增大,故D選項錯誤.故選C.【點睛】此題考查的是反比例函數的增減性,掌握反比例函數的圖象及性質與比例系數的關系是解決此題的關鍵.3、B【分析】因式分解法解方程求得x的值,再根據三角形的三邊關系判斷能否構成三角形,最后求出周長即可.【詳解】解:∵,∴(x-2)(x-3)=0,∴x-2=0或x-3=0,解得:x=2或x=3,當x=2時,三角形的三邊2+2>3,可以構成三角形,周長為3+2+2=7;當x=3時,三角形的三邊滿足3+2>3,可以構成三角形,周長為3+2+3=8,故選:B.【點睛】本題主要考查解一元二次方程的能力和三角形三邊的關系,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.4、A【分析】根據圓的性質,垂徑定理,圓周角定理,三角形外心的定義,對照選項逐一分析即可.【詳解】解:A.在同圓或等圓中,等弧所對的圓周角相等,是真命題;B.平分弦(弦不是直徑)的直徑垂直于弦,故原命題是假命題;C.在同圓或等圓中,等弦所對的圓周角相等,弦對著兩個圓周角,故是假命題;D.三角形外心是三條邊垂直平分線的交點,故是假命題;故選:A.【點睛】本題考查了圓的性質,垂徑定理,圓周角定理,三角形外心的定義,掌握圓的性質和相關定理內容是解題的關鍵.5、A【詳解】∵正比例函數y=2x和反比例函數y=的一個交點為(1,2),∴另一個交點與點(1,2)關于原點對稱,∴另一個交點是(-1,-2).故選A.6、D【分析】由題意可知原拋物線的頂點及平移后拋物線的頂點,根據平移不改變拋物線的二次項系數可得新的拋物線解析式.【詳解】解:由題意得原拋物線的頂點為(0,0),∴平移后拋物線的頂點為(1,3),∴得到的拋物線解析式為y=2(x-1)2+3,故選:D.【點睛】本題考查二次函數的幾何變換,熟練掌握二次函數的平移不改變二次項的系數得出新拋物線的頂點是解決本題的關鍵.7、A【分析】先將拋物線化為頂點式,然后按照“左加右減,上加下減”的規(guī)律進行求解即可.【詳解】因為,所以將拋物線先向左平移3個單位,再向下平移2個單位即可得到拋物線,故選A.【點睛】本題考查了拋物線的平移以及拋物線解析式的變化規(guī)律,熟練掌握“左加右減,上加下減”的規(guī)律是解題的關鍵.8、C【分析】首先過點O作OD⊥BC于D,由垂徑定理可得BC=2BD,又由圓周角定理,可求得∠BOC的度數,然后根據等腰三角形的性質,求得∠OBC的度數,利用余弦函數,即可求得答案.【詳解】過點O作OD⊥BC于D,則BC=2BD,∵△ABC內接于⊙O,∠BAC與∠BOC互補,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半徑為5,∴BD=OB?cos∠OBC=,∴BC=5,故選C.【點睛】本題考查了垂徑定理、圓周角定理、解直角三角形等,添加輔助線構造直角三角形進行解題是關鍵.9、C【解析】分析:設該市2018年、2019年“竹文化”旅游收入的年平均增長率為x,根據2017年及2019年“竹文化”旅游收入總額,即可得出關于x的一元二次方程,解之取其正值即可得出結論.詳解:設該市2018年、2019年“竹文化”旅游收入的年平均增長率為x,根據題意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去).答:該市2018年、2019年“竹文化”旅游收入的年平均增長率約為20%.故選C.點睛:本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.10、A【分析】根據線段的平移規(guī)律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,相加即可得出.【詳解】解:根據線段的平移規(guī)律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,得到A'B',則m+n=1.故選:A【點睛】本題考查的是線段的平移問題,觀察圖形時要考慮其中一點就行.二、填空題(每小題3分,共24分)11、2(1+x)+2(1+x)2=1.【分析】本題為增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果該校這兩年購買的實驗器材的投資年平均增長率為x,根據題意可得出的方程.【詳解】設該校這兩年購買的實驗器材的投資年平均增長率為x,今年的投資金額為:2(1+x),明年的投資金額為:2(1+x)2,所以根據題意可得出的方程:2(1+x)+2(1+x)2=1.故答案為:2(1+x)+2(1+x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,增長率問題,一般形式為a(1+x)2=b,a為起始時間的有關數量,b為終止時間的有關數量.12、【分析】先根據矩形的性質求出矩形對角線所分的四個三角形面積相等,再根據E為AD中點得出S△ODES△OAD,進而求解即可.【詳解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形紙板ABCD.又∵E為AD中點,∴S△ODES△OAD,∴S△ODES矩形紙板ABCD,∴紙團擊中陰影區(qū)域的概率是.故答案為:.【點睛】本題考查了幾何概率,用到的知識點為:概率=相應的面積與總面積之比.13、x=﹣1【分析】根據一元二次方程的兩根得出拋物線與x軸的交點,再利用二次函數的對稱性可得答案.【詳解】∵一元二次方程的兩根為﹣5和3,∴二次函數圖象與x軸的交點為(﹣5,0)和(3,0),由拋物線的對稱性知拋物線的對稱軸為,故答案為:.【點睛】本題主要考查了拋物線與x軸的交點,解題的關鍵是掌握拋物線與x軸交點坐標與對應一元二次方程間的關系及拋物線的對稱性.14、(1)、小于;(2)、6;(3)、9、4【解析】試題分析:根據圖像可得:甲的速度小于乙的速度;兩人在6時相遇;甲行駛了9小時,乙行駛了4小時.考點:函數圖像的應用15、1【分析】由摸到紅球和黑球的概率穩(wěn)定在50%和30%附近得出口袋中得到白色球的概率,進而求出白球個數即可.【詳解】設白球個數為:x個,∵摸到紅球和黑球的概率穩(wěn)定在50%和30%左右,∴口袋中得到白色球的概率為1?50%?30%=20%,∴=20%,解得:x=1,即白球的個數為1個,故答案為:1.【點睛】此題主要考查了利用頻率估計概率,根據大量反復試驗下頻率穩(wěn)定值即概率得出是解題關鍵.16、4π【解析】試題解析:∵邊長為4cm的正方形ABCD繞它的頂點A旋轉180°,頂點B所經過的路線是一段弧長,

弧長是以點A為圓心,AB為半徑,圓心角是180°的弧長,

∴根據弧長公式可得:=4π.

故選A.17、1.【分析】作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,再求出AH,MH,MB,CH,CO,然后證明△CON∽△CHM,再利用相似三角形的性質可計算出ON的長.【詳解】解:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案為:1.【點睛】本題主要考查正方形的性質及相似三角形的判定及性質,掌握正方形的性質及相似三角形的性質是解題的關鍵.18、-1【分析】根據二次根式的性質和負整數指數冪的運算法則進行計算即可.【詳解】故答案為:-1.【點睛】此題主要考查了二次根式的性質以及負整數指數冪的運算法則,熟練掌握其性質和運算法則是解此題的關鍵.三、解答題(共66分)19、(1)(﹣1,4);(2)①;②Q(﹣,).【分析】(1)將點A坐標代入拋物線表達式并解得:m=-1,即可求解;(2)①過點Q作y軸的平行線交AC于點N,先求出直線AC的解析式,點Q(x,﹣x2﹣2x+3),則點N(x,x+3),則△QAC的面積S=×QN×OA=﹣x2﹣x,然后根據二次函數的性質即可求解;②tan∠OCB==,設HM=BM=x,則CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,則點H(0,),同理可得:直線BH(Q)的表達式為:y=-x+,即可求解.【詳解】解:(1)將點A(﹣3,0)代入拋物線表達式并解得,0=﹣9-6m+3∴m=﹣1,故拋物線的表達式為:y=﹣x2﹣2x+3=-(x+1)2+4…①,∴點P(﹣1,4),故答案為:(﹣1,4);(2)①過點Q作y軸的平行線交AC于點N,如圖1,設直線AC的解析式為y=kx+b,將點A(﹣3,0)、C(0,3)的坐標代入一次函數表達式并解得,,解得,∴直線AC的表達式為:y=x+3,設點Q(x,﹣x2﹣2x+3),則點N(x,x+3),△QAC的面積S=QN×OA=(﹣x2﹣2x+3﹣x﹣3)×3=﹣x2﹣x,∵﹣<0,故S有最大值為:;②如圖2,設直線BQ交y軸于點H,過點H作HM⊥BC于點M,tan∠OCB==,設HM=BM=x,則CM=3x,BC=BM+CM=4x=,解得:x=,CH=x=,則點H(0,),同直線AC的表達式的求法可得直線BH(Q)的表達式為:y=﹣x+…②,聯立①②并解得:﹣x2﹣2x+3=﹣x+,解得x=1(舍去)或﹣,故點Q(﹣,).【點睛】本題考查了待定系數法求二次函數和一次函數解析式,二次函數的圖像與性質,銳角三角函數的定義,以及數形結合能力的培養(yǎng).要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.20、①,證明詳見解析;②,證明詳見解析.【分析】(1)根據旋轉角的定義即可得到,即可證得與的位置關系.(2)過點作,交于點,證明四邊形為平行四邊形即可解決問題.【詳解】①.證明:由旋轉的性質,知.又,.②.證明:過點作,交于點..又由旋轉的性質知,...又四邊形為平行四邊形..【點睛】本題考查旋轉變換,掌握旋轉的性質及平行四邊形的判定和性質是解題的關鍵.21、11.3m.【分析】連接OC,求出OC和OE,根據勾股定理求出CE,根據垂徑定理求出CD即可.【詳解】連接OC,求出OC和OE,根據勾股定理求出CE,根據垂徑定理求出CD即可.【解答】解:如圖,連接OC,AB交CD于E,由題意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由題意可知:AB⊥CD,∵AB過O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE=,∴CD=2CE=8≈11.3m,所以路面CD的寬度為11.3m.【點睛】本題考查了垂徑定理和勾股定理,能求出CE的長是解此題的關鍵,注意:垂直于弦的直徑平分這條弦.22、(1)30;(2)作圖見解析;(3)240;(4).【解析】試題分析:(1)由D選項的人數及其百分比可得總人數;(2)總人數減去A、C、D選項的人數求得B的人數即可;(3)總人數乘以樣本中B選項的比例可得;(4)畫樹狀圖列出所有等可能結果,根據概率公式求解可得.試題解析:解:(1)本次調查的學生人數為6÷20%=30;(2)B選項的人數為30﹣3﹣9﹣6=12,補全圖形如下:(3)估計“了解”的學生約有600×=240名;(4)畫樹狀圖如下:由樹狀圖可知,共有6種等可能結果,其中兩人恰好是一男生一女生的有4種,∴被選中的兩人恰好是一男生一女生的概率為=.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用以及概率的求法,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.23、(1)P(摸出白球)=;(2)這個游戲規(guī)則對雙方不公平.【分析】(1)根據A袋中共有3個球,其中2個是白球,直接利用概率公式求解即可;(2)列表得到所有等可能的結果,然后分別求出小林獲勝和小華獲勝的概率進行比較即可.【詳解】(1)A袋中共有3個球,其中有2個白球,∴P(摸出白球)=;(2)根據題意,列表如下:紅1紅2白白1(白1,紅1)(白1,紅2)(白1,白)白2(白2,紅1)(白2,紅2)(白2,白)紅(紅,紅1)(紅,紅2)(紅,白)由上表可知,共有9種等可能結果,其中顏色相同的結果有4種,顏色不同的結果有5種,∴P(顏色相同)=,P(顏色不同)=,∵<,∴這個游戲規(guī)則對雙方不公平.【點睛】本題考查了列表法或樹狀圖法求概率,判斷游戲的公平性,用到的知識點為:概率=所求情況數與總情況數之比.24、(1);(2)P(2,);(3)點的坐標為或或或.【分析】⑴代入A、B點坐標得出拋物線的交點式y=a(x+4)(x-2),然后代入C點坐標即可求出;⑵首先根據勾股定理可以求出AC=5,通過PE∥y軸,得到△PED∽△AOC,PD:AO=DE:OC=PE:AC,得到PD:4=DE:3=PE:5,PD,DE分別用PE表示,可得△PDE的周長=PE,要使△PDE周長最大,PE取最大值即可;設P點的橫坐標a,那么縱坐標為a2+a-3,根據E點在AC所在的直線上,求出解析式,那么E點的橫坐標a,縱坐標-a-3,從而求出PE含a的二次函數式,求出PE最大值,進而求出P點坐標及△PDE周長.⑶分類討論①當BM為對角線時點F在y軸上,根據對稱性得到點F的坐標.②當BM為邊時,BC也為邊時,求出BC長直接可以寫出F點坐標,分別是點M在軸負半軸上時,點F的坐標為;點M在軸正半軸上時,點F的坐標為.③當BM為邊時,BC也為對角線時,首先求出BC所在直線的解析式,然后求出BC中點的坐標,MF所在直線也經過這點并且與BC所在的直線垂直,所以可以求出MF所在直線的解析式,可以求出M點坐標,求出F點的橫坐標,代入MF解析式求出縱坐標,得到F【詳解】解:拋物線經過點,它們的坐標分別為,故設其解析式為.又拋物線經過點,代入解得,則拋物線的解析式為.,..又軸,,∴△PDE∽△AOC.,即,∴的周長則要使周長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論