寧夏銀川市第一中學(xué)2020-2021學(xué)年高二上學(xué)期期中考試數(shù)學(xué)(理科)試題_第1頁
寧夏銀川市第一中學(xué)2020-2021學(xué)年高二上學(xué)期期中考試數(shù)學(xué)(理科)試題_第2頁
寧夏銀川市第一中學(xué)2020-2021學(xué)年高二上學(xué)期期中考試數(shù)學(xué)(理科)試題_第3頁
寧夏銀川市第一中學(xué)2020-2021學(xué)年高二上學(xué)期期中考試數(shù)學(xué)(理科)試題_第4頁
寧夏銀川市第一中學(xué)2020-2021學(xué)年高二上學(xué)期期中考試數(shù)學(xué)(理科)試題_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

銀川一中2020/2021學(xué)年度(上)高二期中考試數(shù)學(xué)(理科)試卷命題教師:一、選擇題(本大題共12題,共60分)1.已知命題p:,下列形式正確的是()A.,使得 B.,使得C. D.2.橢圓的焦點坐標為()A. B. C. D.3.設(shè)F1、F2分別是雙曲線的左、右焦點,點P在雙曲線上,且|PF1|=5,則|PF2|=()A.1 B.3 C.3或7 D.1或94.“3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分

C.充要 D.既不充分也不必要5.甲、乙兩名同學(xué)在5次體育測試中的成績統(tǒng)計的莖葉圖如圖所示.若甲、乙兩人的平均成績分別是,則下列結(jié)論正確的是()A.;乙比甲成績穩(wěn)定 B.;甲比乙成績穩(wěn)定C.;乙比甲成績穩(wěn)定D.;甲比乙成績穩(wěn)定6.袋中裝有3個白球,4個黑球,從中任取3個球,則①恰有1個白球和全是白球;②至少有1個白球和全是黑球;③至少有1個白球和至少有2個白球;④至少有1個白球和至少有1個黑球.在上述事件中,是對立事件的為()A.① B.② C.③ D.④7.在數(shù)字1,2,3,4,5中任取兩個不同的數(shù)字構(gòu)成一個兩位數(shù),則這個兩位數(shù)大于40的概率為()A. B. C. D.8.在古代,直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”。三國時期吳國數(shù)學(xué)家趙爽用“弦圖”(如圖)證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實。”這里的“實”可以理解為面積。這個證明過程體現(xiàn)的是這樣一個等量關(guān)系:“兩條直角邊的乘積是兩個全等直角三角形的面積的和(朱實二),4個全等的直角三角形的面積的和(朱實四)加上中間小正方形的面積(黃實)等于大正方形的面積(弦實)”。若弦圖中“弦實”為16,“朱實一”為,若隨機向弦圖內(nèi)投入一粒黃豆(大小忽略不計),則其落入小正方形內(nèi)的概率為()A. B. C. D.9.圓的半徑為4,圓心為是圓內(nèi)一個定點,是圓上任意一點,線段的垂直平分線與半徑相交于點,當點在圓上運動時,點的軌跡方程為()A.B.C.D.10.已知P為橢圓上的一個點,點M,N分別為圓(x+3)2+y2=1和圓(x3)2+y2=4上的動點,則|PM|+|PN|的最小值為()A.6 B.7 C.10 D.1311.雙曲線的左、右焦點分別為F1、F2,過點F1且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點,若|QP|=|QF2|,則雙曲線C的離心率為()A. B. C. D.12.橢圓的左、右焦點分別為F1,F(xiàn)2,弦AB過F1,若的內(nèi)切圓面積為,A,B兩點的坐標分別為(x1,y1)和(x2,y2),則|y2y1|的值為()A.3 B. C. D.6二、填空題(本大題共4小題,共20.0分)13.雙曲線的漸近線方程為______.14.某中學(xué)共有360名教師,其中一線教師280名,行政人員55人,后勤人員25人,采取分層抽樣,擬抽取一個容量為72的樣本,則一線教師應(yīng)該抽______人.15.在今后的三天中,每一天下雨的概率均為40%,采用隨機模擬試驗的方法估計三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):

907

966

191

925

271

932

812

458

569

683

431

257

393

027

556

488

730

113

537

989

據(jù)此估計,這三天中恰有兩天下雨的概率近似為______.16.已知焦點在x軸上的橢圓的左、右焦點分別為F1、F2,直線l過F2,且和橢圓C交于A,B兩點,,與的面積之比為3:1,則橢圓C的離心率為______________.三、解答題(本大題共6小題,共70.0分)17.(本小題10分)已知a<3,設(shè)p:,q:x2+4x5>0.

(1)若p是的必要不充分條件,求實數(shù)a的取值范圍;

(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.AOBF1AOBF1F2xy如圖,點F1,F(xiàn)2分別是橢圓的左、右焦點.點A是橢圓C上一點,且滿足AF1⊥x軸,∠AF2F1=30°,直線AF2與橢圓C相交于另一點B.(1)求橢圓C的離心率e;(2)若的周長為,求橢圓C的標準方程.分數(shù)19.(本小題12分)分數(shù)某校為了解學(xué)生對食堂的滿意程度,做了一次問卷調(diào)查,對三個年級進行分層抽樣,共抽取40名同學(xué)進行詢問打分,將最終得分按[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],分成6段,并得到如圖所示的頻率分布直方圖.

(1)求頻率分布直方圖中a的值,以及此次問卷調(diào)查分數(shù)的中位數(shù);(2)若從打分區(qū)間在[60,70)的同學(xué)中隨機抽出兩位同學(xué),求抽出的兩位同學(xué)中至少有一位同學(xué)來自打分區(qū)間[65,70)的概率.20.(本小題12分)某市2月份到8月份溫度在逐漸上升,因此居民用水也發(fā)生變化,如表顯示了某家庭2月份到6月份的用水情況.月份23456用水量(噸)4.55677.5(1)根據(jù)表中的數(shù)據(jù),求關(guān)于的線性回歸方程.(2)為了鼓勵市民節(jié)約用水,該市自來水公司規(guī)定若每月每戶家庭用水不超過7噸,則水費為2.5元/噸;若每月每戶家庭用水超過7噸,則超出部分水費為3元/噸.預(yù)計該家庭8月份的用水量及水費.參考公式:,.21.(本小題12分)已知橢圓的右頂點為A,上頂點為B,O為坐標原點,,的面積為1.求橢圓C的方程;若M,N是橢圓C上兩點,且,記直線BM,AN的斜率分別為,,證明:為定值.

22.(本小題12分)已知橢圓的一個焦點與短軸的兩端點組成一個正三角形的三個頂點,且橢圓經(jīng)過點.(1)求橢圓M的標準方程;(2)直線l:x=ky+n與橢圓M相交于A,B兩點,且以線段AB為直徑的圓過橢圓的右頂點C,求ΔABC面積的最大值.

高二期中數(shù)學(xué)(理科)參考答案(2020/2021上)112BBCBA,BBDCB,CA題號123456789101112答案BBCBABBDCBCA13.y=±13x14.5615.17.【答案】解:(1)因為x2-(3+a)x+3a<0,a<3,

所以a<x<3,記A=(a,3),

又因為x2+4x-5>0,所以x<-5或x>1,

記B=(-∞,-5)∪(1,+∞),

又p是¬q的必要不充分條件,所以有¬q?p,且p推不出¬q,

所以?RB?A,即[-5,1]?(a,3),

所以實數(shù)a的取值范圍是a∈(-∞,-5).

(2)因為p是q的充分不必要條件,則有p?q,且q推不出p,

所以A?B,所以有(a,3)?(-∞,-5)∪(1,+∞),即a≥1,18.【答案】解:(1)∵RtΔAF1F2中,,

∴AF2=2AF1,?F1F2=3AF1,(AF1>0),

∴由橢圓的定義,2a=AF1+AF2=3AF1,2c=3AF1,

∴離心率e=ca=2c2a=3AF13AF1=33;

(2)ΔABF1的周長=AF1+BF1+AB=AF1+BF1+AF2+BF2=4a=43,

∴a=3,

∵e=ca=33,

∴c=1,

∴b2=a2-c2=2,

∴橢圓C的標準方程為x23+y22=1.20.【答案】(1);(2)9.2噸,24.1元.【詳解】(1),,,.∴,.∴關(guān)于的線性回歸方程為;(2)當時,噸,水費為元.∴預(yù)計該家庭8月份的用水量為9.2噸,水費為24.1元.21.【答案】解:(1)由題意可得|OA|=a,|OB|=b,

所以a+b=3,且12ab=1,解得a=2,b=1,

所以橢圓的方程為x24+y2=1;

(2)證明:由(1)可得A(2,0),B(0,1),所以kMN=?12,

設(shè)M(x1,y1),N(x2,y2)直線MN的方程為y=?12x+t,

聯(lián)立直線MN與橢圓的方程22.【答案】解:(1)根據(jù)題意,設(shè)橢圓的上下頂點為B1(0,b),B2(0,-b),左焦點為F1(-c,0),

則△B1B2F1是正三角形,所以2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論