版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市吉大附中實驗學(xué)校2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若二次函數(shù)y=ax2+bx+c(a<0)的圖象經(jīng)過點(2,0),且其對稱軸為x=﹣1,則使函數(shù)值y>0成立的x的取值范圍是().A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<22.如圖,是的直徑,點在上,,則的度數(shù)為()A. B. C. D.3.如圖,.分別與相切于.兩點,點為上一點,連接.,若,則的度數(shù)為().A.; B.; C.; D..4.一元二次方程x2﹣3x=0的兩個根是()A.x1=0,x2=﹣3 B.x1=0,x2=3 C.x1=1,x2=3 D.x1=1,x2=﹣35.中,,,,則的值是()A. B. C. D.6.下列對于二次根式的計算正確的是()A. B.2=2C.2=2 D.2=7.已知則()A. B. C. D.8.如圖,在正方形ABCD中,H是對角線BD的中點,延長DC至E,使得DE=DB,連接BE,作DF⊥BE交BC于點G,交BE于點F,連接CH、FH,下列結(jié)論:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正確的個數(shù)是()A.5 B.4 C.3 D.29.已知sinα=,求α.若以科學(xué)計算器計算且結(jié)果以“度,分,秒”為單位,最后應(yīng)該按鍵()A.AC B.2ndF C.MODE D.DMS10.拋物線的頂點坐標(biāo)是A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,邊長為的正方形網(wǎng)格中,的頂點都在格點上,則的面積為_______;若將繞點順時針旋轉(zhuǎn),則頂點所經(jīng)過的路徑長為__________.12.一組數(shù)據(jù):3,2,1,2,2,3,則這組數(shù)據(jù)的眾數(shù)是_____.13.一個不透明的布袋中裝有3個白球和5個紅球,它們除了顏色不同外,其余均相同,從中隨機摸出一個球,摸到紅球的概率是______.14.如圖,是某同學(xué)制作的一個圓錐形紙帽的示意圖,則圍成這個紙帽的紙的面積為______.15.如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸的負(fù)半軸上,反比例函數(shù)y=(x<0)的圖象經(jīng)過對角線OB的中點D和頂點C.若菱形OABC的面積為6,則k的值等于_____.16.若把一根長200cm的鐵絲分成兩部分,分別圍成兩個正方形,則這兩個正方形的面積的和最小值為_____.17.某園進行改造,現(xiàn)需要修建一些如圖所示圓形(不完整)的門,根據(jù)實際需要該門的最高點C距離地面的高度為2.5m,寬度AB為1m,則該圓形門的半徑應(yīng)為_____m.18.一個正六面體的骰子投擲一次得到正面向上的數(shù)字為奇數(shù)的概率:__________.三、解答題(共66分)19.(10分)如圖,在矩形ABCD中,AB=6,AD=3,點E是邊CD的中點,點P,Q分別是射線DC與射線EB上的動點,連結(jié)PQ,AP,BP,設(shè)DP=t,EQ=2t.(1)當(dāng)點P在線段DE上(不包括端點)時.①求證:AP=PQ;②當(dāng)AP平分∠DPB時,求△PBQ的面積.(2)在點P,Q的運動過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請求出t的值;若不存在,試說明理由.20.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點.(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.(2)求△AOB的面積.(3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.21.(6分)點為圖形上任意一點,過點作直線垂足為,記的長度為.定義一:若存在最大值,則稱其為“圖形到直線的限距離”,記作;定義二:若存在最小值,則稱其為“圖形到直線的基距離”,記作;(1)已知直線,平面內(nèi)反比例函數(shù)在第一象限內(nèi)的圖象記作則.(2)已知直線,點,點是軸上一個動點,的半徑為,點在上,若求此時的取值范圍,(3)已知直線恒過定點,點恒在直線上,點是平面上一動點,記以點為頂點,原點為對角線交點的正方形為圖形,若請直接寫出的取值范圍.22.(8分)如圖,在四邊形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).(1)求證:△ACD∽△BAC;(2)求DC的長;(3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請說明理由.23.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,4)、B(-4,n)兩點.(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;(3)過點B作BC⊥x軸,垂足為點C,連接AC,求S△ABC.24.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)2=x2﹣925.(10分).已知關(guān)于x的方程的兩根為滿足:,求實數(shù)k的值26.(10分)為爭創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計圖表.類別人數(shù)百分比A686.8%B245b%Ca51%D17717.7%總計c100%根據(jù)以上提供的信息解決下列問題:(1)a=,b=c=(2)若我市約有30萬人使用電瓶車,請分別計算活動前和活動后全市騎電瓶車“都不戴”安全帽的人數(shù).(3)經(jīng)過某十字路口,汽車無法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動車不受限制,現(xiàn)有一輛汽車和一輛電動車同時到達該路口,用畫樹狀圖或列表的方法求汽車和電動車都向左轉(zhuǎn)的概率.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由拋物線與x軸的交點及對稱軸求出另一個交點坐標(biāo),根據(jù)拋物線開口向下,根據(jù)圖象求出使函數(shù)值y>0成立的x的取值范圍即可.【詳解】∵二次函數(shù)y=ax1+bx+c(a<0)的圖象經(jīng)過點(1,0),且其對稱軸為x=﹣1,∴二次函數(shù)的圖象與x軸另一個交點為(﹣4,0),∵a<0,∴拋物線開口向下,則使函數(shù)值y>0成立的x的取值范圍是﹣4<x<1.故選D.2、B【分析】連接AC,根據(jù)圓周角定理,分別求出∠ACB=90,∠ACD=20,即可求∠BCD的度數(shù).【詳解】連接AC,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∵∠AED=20°,
∴∠ACD=∠AED=20°,
∴∠BCD=∠ACB+∠ACD=90°+20°=110°,
故選:B.【點睛】本題考查的是圓周角定理:①直徑所對的圓周角為直角;②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、D【解析】連接.,由切線的性質(zhì)可知,由四邊形內(nèi)角和可求出的度數(shù),根據(jù)圓周角定理(一條弧所對的圓周角等于它所對的圓心角的一半)可知的度數(shù).【詳解】解:連接.,∵.分別與相切于.兩點,∴,,∴,∴,∴.故選:D.【點睛】本題主要考查了圓的切線性質(zhì)及圓周角定理,靈活應(yīng)用切線性質(zhì)及圓周角定理是解題的關(guān)鍵.4、B【分析】利用因式分解法解一元二次方程即可.【詳解】x2﹣1x=0,x(x﹣1)=0,x=0或x﹣1=0,x1=0,x2=1.故選:B.【點睛】本題考查了解一元二次方程?因式分解法:就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).5、D【分析】根據(jù)勾股定理求出BC的長度,再根據(jù)cos函數(shù)的定義求解,即可得出答案.【詳解】∵AC=,AB=4,∠C=90°∴∴故答案選擇D.【點睛】本題考查的是勾股定理和三角函數(shù),比較簡單,需要熟練掌握sin函數(shù)、cos函數(shù)和tan函數(shù)分別代表的意思.6、C【解析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項錯誤;B、原式=,所以B選項錯誤;C、原式=2,所以C選項正確;D、原式=6,所以D選項錯誤.故選C.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.7、A【解析】根據(jù)特殊角的三角函數(shù)值求解即可.【詳解】∵,∴,故選:A.【點睛】本題考查了特殊角的三角函數(shù)值,比較簡單,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.8、B【解析】由等腰三角形“三線合一”的性質(zhì)可得EF=BF,根據(jù)H是正方形對角線BD的中點可得CH=DH=BH,即可證明HF是△BDE的中位線,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形兩銳角互余的關(guān)系可得∠CBE=∠CDG,利用ASA可證明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性質(zhì)可得BD2=2CD2,根據(jù)∠CBE=∠CDG,∠E是公共角可證明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可對③進行判定,根據(jù)等底等高的三角形面積相等可對④進行判定,綜上即可得答案.【詳解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD對角線BD的中點,∴CH=DH=BH=BD,∴HF是△BDE的中位線,∴HF=DE=BD=CH,HF//DE,故①⑤正確,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正確,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③錯誤,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正確,綜上所述:正確的結(jié)論有①②④⑤,共4個,故選B.【點睛】本題考查正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及三角形中位線的性質(zhì),綜合性較強,熟練掌握所學(xué)性質(zhì)及定理是解題關(guān)鍵.9、D【分析】根據(jù)利用科學(xué)計算器由三角函數(shù)值求角度的使用方法,容易進行選擇.【詳解】若以科學(xué)計算器計算且結(jié)果以“度,分,秒”為單位,最后應(yīng)該按DMS,故選:D.【點睛】本題考查科學(xué)計算器的使用方法,屬基礎(chǔ)題.10、A【分析】已知拋物線頂點式y(tǒng)=a(x﹣h)2+k,頂點坐標(biāo)是(h,k).【詳解】∵拋物線y=3(x﹣1)2+1是頂點式,∴頂點坐標(biāo)是(1,1).故選A.【點睛】本題考查了由拋物線的頂點式寫出拋物線頂點的坐標(biāo),比較容易.二、填空題(每小題3分,共24分)11、3.5;【分析】(1)利用△ABC所在的正方形的面積減去四周三個直角三角形的面積,列式計算即可得解;(2)根據(jù)勾股定理列式求出AC,然后利用弧長公式列式計算即可得解.【詳解】(1)△ABC的面積=3×3?×2×3?×1×3?×1×2,=9?3?1.5-1=3.5;(2)由勾股定理得,AC=,所以,點A所經(jīng)過的路徑長為故答案為:3.5;.【點睛】本題考查了利用旋轉(zhuǎn)的性質(zhì),弧長的計算,熟練掌握網(wǎng)格結(jié)構(gòu),求出AC的長是解題的關(guān)鍵.12、1.【分析】根據(jù)眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)解答即可.【詳解】在數(shù)據(jù):3,1,1,1,1,3中,1出現(xiàn)3次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是1,故答案為:1.【點睛】此題考查的是求一組數(shù)據(jù)的眾數(shù),掌握眾數(shù)的定義是解決此題的關(guān)鍵.13、【分析】根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】根據(jù)題意可得:一個不透明的袋中裝有除顏色外其余均相同的3個白球和5個紅球,共5個,從中隨機摸出一個,則摸到紅球的概率是故答案為:.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.14、【分析】根據(jù)已知得出圓錐的底面半徑為10cm,圓錐的側(cè)面積=π×底面半徑×母線長,即可得出答案.【詳解】解:底面圓的半徑為10,則底面周長=10π,
側(cè)面面積=×10π×30=300πcm1.
故答案為:300πcm1.【點睛】本題主要考查了圓錐的側(cè)面積公式,掌握圓錐側(cè)面積公式是解決問題的關(guān)鍵,此問題是中考中考查重點.15、﹣1【分析】根據(jù)題意,可以設(shè)出點C和點A的坐標(biāo),然后利用反比例函數(shù)的性質(zhì)和菱形的性質(zhì)即可求得k的值,本題得以解決.【詳解】解:設(shè)點A的坐標(biāo)為(a,0),點C的坐標(biāo)為(c,),則﹣a?=6,點D的坐標(biāo)為(,),∴,解得,k=﹣1,故答案為﹣1.【點睛】本題考查反比例函數(shù)系數(shù)的幾何意義、反比例函數(shù)的性質(zhì)、菱形的性質(zhì)、反比例函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.16、1150cm1【分析】設(shè)將鐵絲分成xcm和(100﹣x)cm兩部分,則兩個正方形的邊長分別是cm,cm,再列出二次函數(shù),求其最小值即可.【詳解】如圖:設(shè)將鐵絲分成xcm和(100﹣x)cm兩部分,列二次函數(shù)得:y=()1+()1=(x﹣100)1+1150,由于>0,故其最小值為1150cm1,故答案為:1150cm1.【點睛】本題考查二次函數(shù)的最值問題,解題的關(guān)鍵是根據(jù)題意正確列出二次函數(shù).17、【分析】過圓心作弦AB的垂線,運用垂徑定理和勾股定理即可得到結(jié)論.【詳解】過圓心點O作OE⊥AB于點E,連接OC,∵點C是該門的最高點,∴,∴CO⊥AB,∴C,O,E三點共線,連接OA,∵OE⊥AB,∴AE==0.5m,設(shè)圓O的半徑為R,則OE=2.5-R,∵OA2=AE2+OE2,∴R2=(0.5)2+(2.5-R)2,解得:R=,故答案為.【點睛】本題考查了垂徑定理,勾股定理,正確的作出輔助線是解題的關(guān)鍵.18、【解析】根據(jù)向上一面可能出現(xiàn)的有6種情況,其中出現(xiàn)數(shù)字為奇數(shù)的有3種情況,利用概率公式進行計算即可得.【詳解】擲一次正六面體骰子向上一面的數(shù)字有1、2、3、4、5、6共6種可能,其中奇數(shù)有1,3,5共3個,∴擲一次朝上一面的數(shù)字是奇數(shù)的概率是=,故答案為:.【點睛】本題考查了概率的計算,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共66分)19、(1)①見解析;②S△PBQ=18﹣93;(2)存在,滿足條件的t的值為6﹣13或13或6+13.【解析】(1)①如圖1中,過點Q作QF⊥CD于點F,證明Rt△ADP≌Rt△PFQ即可.②如圖,過點A作PB的垂線,垂足為H,過點Q作PB的垂線,垂足為G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,則有12+(6﹣t)2=62,求出t即可解決問題.(2)分三種情形:①如圖1﹣1中,若點P在線段DE上,當(dāng)PQ=QB時.②如圖1﹣2中,若點P在線段EC上(如圖),當(dāng)PB=BQ時.③如圖1﹣1中,若點P在線段DC延長線上,QP=QB時,分別求解即可.【詳解】(1)①證明:如圖1中,過點Q作QF⊥CD于點F,∵點E是DC的中點,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如圖,過點A作PB的垂線,垂足為H,過點Q作PB的垂線,垂足為G.由AP平分∠DPB,得∠APD=∠APB,易證Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易證Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,則有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12?PB?QG=12×6×(6﹣12)=18﹣9(1)①如圖1﹣1中,若點P在線段DE上,當(dāng)PQ=QB時,∴AP=PQ=QB=BE﹣EQ=12﹣2t,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(1﹣t)2,解得t=6﹣12或6+12(舍去)②如圖1﹣2中,若點P在線段EC上(如圖),當(dāng)PB=BQ時,∴PB=BQ=2t﹣12,則在Rt△BCP中,由BP2=CP2+BC2,得2(t﹣1)2=(6﹣t)2+9,解得:t=12或-33③如圖1﹣1中,若點P在線段DC延長線上,QP=QB時,∴AP=PQ=BQ=2t﹣12,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(t﹣1)2,解得t=6-33(舍去)或綜上所述,滿足條件的t的值為6﹣12或12或6+12.【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判走和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決間題,屬于中考壓軸題.20、(1),y=x﹣1;(2);(3)x>2或﹣1<x<0【解析】(1)將A坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,再講B坐標(biāo)代入反比例解析式中求出a的值,確定出B的坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)求出k與b的值,即可確定出一次函數(shù)解析式;
(2)對于一次函數(shù),令y=0求出x的值,確定出C的坐標(biāo),即OC的長,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;
(3)在圖象上找出一次函數(shù)值大于反比例函數(shù)值時x的范圍即可.【詳解】(1)把A(2,1)代入y=,得:m=2,∴反比例函數(shù)的解析式為y=,把B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),將點A(2,1)、B(﹣1,﹣2)代入y=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=x﹣1;(2)在一次函數(shù)y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,則S△AOB=×1×1+×1×2=;(3)由圖象可知,當(dāng)x>2或﹣1<x<0時,一次函數(shù)的值大于反比例函數(shù)的值.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,一次函數(shù)與坐標(biāo)軸的交點,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、(1);(2)或;(3)或【分析】(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,根據(jù)只有一個交點可求出b,再聯(lián)立求出P的坐標(biāo),從而判斷出PQ平分∠AOB,再利用直線表達式求A、B坐標(biāo)證明OA=OB,從而證出PQ即為最小距離,最后利用勾股定理計算即可;(2)過點作直線,可判斷出上的點到直線的最大距離為,然后根據(jù)最大距離的范圍求出TH的范圍,從而得到FT的范圍,根據(jù)范圍建立不等式組求解即可;(3)把點P坐標(biāo)帶入表達式,化簡得到關(guān)于a、b的等式,從而推出直線的表達式,根據(jù)點E的坐標(biāo)可確定點E所在直線表達式,再根據(jù)最小距離為0,推出直線一定與圖形K相交,從而分兩種情況畫圖求解即可.【詳解】解:(1)作直線:平行于直線,且與H相交于點P,連接PO并延長交直線于點Q,作PM⊥x軸,∵直線:與H相交于點P,∴,即,只有一個解,∴,解得,∴,聯(lián)立,解得,即,∴,且點P在第一、三象限夾角的角平分線上,即PQ平分∠AOB,∴為等腰直角三角形,且OP=2,∵直線:,∴當(dāng)時,,當(dāng)時,,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ平分∠AOB,∴OQ⊥AB,即PQ⊥AB,∴PQ即為H上的點到直線的最小距離,∵OA=OB,∴,∴AQ=OQ,∴在中,OA=2,則OQ=,∴,即;(2)由題過點作直線,則上的點到直線的最大距離為,∵,即,∴,由題,則,∴,又∵,∴,解得或;(3)∵直線恒過定點,∴把點P代入得:,整理得:,∴,化簡得,∴,又∵點恒在直線上,∴直線的表達式為:,∵,∴直線一定與以點為頂點,原點為對角線交點的正方形圖形相交,∵,∴點E一定在直線上運動,情形一:如圖,當(dāng)點E運動到所對頂點F在直線上時,由題可知E、F關(guān)于原點對稱,∵,∴,把點F代入得:,解得:,∵當(dāng)點E沿直線向上運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向下運動,即;情形二:如圖,當(dāng)點E運動到直線上時,把點E代入得:,解得:,∵當(dāng)點E沿直線向下運動時,對角線變短,正方形變小,無交點,∴點E要沿直線向上運動,即,綜上所述,或.【點睛】本題考查新型定義題,弄清題目含義,正確畫出圖形是解題的關(guān)鍵.22、(1)見解析;(2)DC=6.4cm;(3)當(dāng)△EFB為等腰三角形時,t的值為秒或秒或秒.【分析】(1)根據(jù)三角形相似的判定定理即可得到結(jié)論;(2)由△ACD∽△BAC,得,結(jié)合=8cm,即可求解;(3)若△EFB為等腰三角形,可分如下三種情況:①當(dāng)BF=BE時,②當(dāng)EF=EB時,③當(dāng)FB=FE時,分別求出t的值,即可.【詳解】(1)∵CD∥AB,∴∠BAC=∠DCA,又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)在Rt△ABC中,=8cm,由(1)知,△ACD∽△BAC,∴,即:,解得:DC=6.4cm;(3)△BEF能為等腰三角形,理由如下:由題意得:AF=2t,BE=t,若△EFB為等腰三角形,可分如下三種情況:①當(dāng)BF=BE時,10﹣2t=t,解得:t=;②當(dāng)EF=EB時,如圖1,過點E作AB的垂線,垂足為G,則,此時△BEG∽△BAC,∴,即,解得:t=;③當(dāng)FB=FE時,如圖2,過點F作AB的垂線,垂足為H,則,此時△BFH∽△BAC,∴,即,解得:;綜上所述:當(dāng)△EFB為等腰三角形時,t的值為秒或秒或秒.【點睛】本題主要考查相似三角形的判定和性質(zhì)的綜合以及等腰三角形的性質(zhì)與勾股定理,添加輔助線構(gòu)造相似三角形,是解題的關(guān)鍵.23、(1);;(2)或;(3)6【分析】(1)先根據(jù)點A的坐標(biāo)求出反比例函數(shù)的解析式,再求出B的坐標(biāo),利用待定系數(shù)法求一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值>反比例函數(shù)的值時,直線在雙曲線的上方,直接根據(jù)圖象寫出一次函數(shù)的值>反比例函數(shù)的值x的取值范圍.
(3)以BC為底,BC上的高為A點橫坐標(biāo)和B點橫坐標(biāo)的絕對值的和,即可求出面積.【詳解】解:(1)∵點在的圖象上,∴.∴反比例函數(shù)的表達式為:;∴,.∵點,在上,∴∴∴一次函數(shù)的表達式為:;(2)根據(jù)題意,由點,,結(jié)合圖像可知,直線要在雙曲線的上方,∴不等式kx+b>的解集為:或.故答案為:或.(3)根據(jù)題意,以為底,則邊上的高
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球4U 機架式 CDU行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球高純度乙酰氯行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國數(shù)據(jù)中心冷卻泵行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球紅外線加熱系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國壓電線性位移臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年度宅基地使用權(quán)轉(zhuǎn)讓與鄉(xiāng)村振興戰(zhàn)略實施協(xié)議4篇
- 2025版售樓部裝修工程竣工驗收報告合同范本6篇
- 2025年度個人消費信用貸款合同范本11篇
- 二零二五年度商業(yè)街區(qū)臨時房屋借用經(jīng)營合同3篇
- 二零二五山地旅游度假村租賃協(xié)議3篇
- 語言學(xué)概論全套教學(xué)課件
- 大數(shù)據(jù)與人工智能概論
- 《史記》上冊注音版
- 2018年湖北省武漢市中考數(shù)學(xué)試卷含解析
- 測繪工程產(chǎn)品價格表匯編
- 《腎臟的結(jié)構(gòu)和功能》課件
- 裝飾圖案設(shè)計-裝飾圖案的形式課件
- 護理學(xué)基礎(chǔ)教案導(dǎo)尿術(shù)catheterization
- ICU護理工作流程
- 天津市新版就業(yè)、勞動合同登記名冊
- 廣東版高中信息技術(shù)教案(全套)
評論
0/150
提交評論