2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年福建省晉江市潘徑中學(xué)中考四模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線a∥b,∠ABC的頂點B在直線a上,兩邊分別交b于A,C兩點,若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°2.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.3.7的相反數(shù)是()A.7 B.-7 C. D.-4.下列運算正確的是()A. B. C. D.5.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.6.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.7.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(

)A.4 B.6 C.8 D.108.若反比例函數(shù)的圖像經(jīng)過點,則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.9.某學(xué)校組織藝術(shù)攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設(shè)照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×510.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側(cè)面,則這個圓錐的高為()cm.A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.12.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當(dāng)?shù)臈l件________,使ABCD成為正方形.13.如圖,正方形ABCD的邊長為6,E,F(xiàn)是對角線BD上的兩個動點,且EF=,連接CE,CF,則△CEF周長的最小值為_____.14.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.15.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點D.若,則∠B=________°.16.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.三、解答題(共8題,共72分)17.(8分)十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個小孩(假設(shè)生男生女機會均等,且與順序無關(guān)).(1)該家庭生育兩胎,假設(shè)每胎都生育一個小孩,求這兩個小孩恰好都是女孩的概率;(2)該家庭生育兩胎,假設(shè)第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中恰好是2女1男的概率.18.(8分)先化簡,再求值:(﹣)÷,其中x的值從不等式組的整數(shù)解中選?。?9.(8分)(1)化簡:(2)解不等式組.20.(8分)解方程組:.21.(8分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.22.(10分)某學(xué)校為了解學(xué)生的課余活動情況,抽樣調(diào)查了部分學(xué)生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調(diào)查了學(xué)生,并請補全折線統(tǒng)計圖;(2)該校共有2200名學(xué)生,估計該校愛好閱讀和愛好體育的學(xué)生一共有多少人?23.(12分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=,設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?24.如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

依據(jù)平行線的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,內(nèi)錯角相等.2、D【解析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.3、B【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點睛】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.4、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運算,底數(shù)不變,指數(shù)相乘.,故D正確;【點睛】本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關(guān)鍵.5、D【解析】

根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關(guān)鍵.6、C【解析】

如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考常考題型.7、B【解析】

平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當(dāng)OD⊥BC時,OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進行求解.8、D【解析】

甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【詳解】解:由于函數(shù)的圖像經(jīng)過點,則有∴圖象過第二、四象限,

∵k=-1,

∴一次函數(shù)y=x-1,

∴圖象經(jīng)過第一、三、四象限,

故選:D.【點睛】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進行判斷;9、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關(guān)系,根據(jù)兩個矩形的面積3倍的關(guān)系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎(chǔ)題.10、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關(guān)鍵.12、∠BAD=90°(不唯一)【解析】

根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當(dāng)∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.13、2+4【解析】

如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最小.【詳解】如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。逤H=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【點睛】本題考查軸對稱﹣最短問題,正方形的性質(zhì)、勾股定理、平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題.14、7【解析】設(shè)樹的高度為m,由相似可得,解得,所以樹的高度為7m15、18°【解析】

由折疊的性質(zhì)可得∠ABC=∠CBD,根據(jù)在同圓和等圓中,相等的圓周角所對的弧相等可得,再由和半圓的弧度為180°可得的度數(shù)×5=180°,即可求得的度數(shù)為36°,再由同弧所對的圓周角的度數(shù)為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質(zhì)可得∠ABC=∠CBD,∴,∵,∴的度數(shù)+的度數(shù)+的度數(shù)=180°,即的度數(shù)×5=180°,∴的度數(shù)為36°,∴∠B=18°.故答案為:18.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.還考查了圓弧的度數(shù)與圓周角之間的關(guān)系.16、3.【解析】

先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設(shè)AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時需要將已知角的三角函數(shù)、已知邊、未知邊,轉(zhuǎn)換到同一直角三角形中,然后解決問題.三、解答題(共8題,共72分)17、(1)P(兩個小孩都是女孩)=;(2)P(三個小孩中恰好是2女1男)=.【解析】

(1)畫出樹狀圖即可解題,(2)畫出樹狀圖即可解題.【詳解】(1)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有4種等可能結(jié)果,而這兩個小孩恰好都是女孩的有1種可能,∴P(兩個小孩都是女孩)=.(2)畫樹狀圖如下:由樹狀圖可知,生育兩胎共有8種等可能結(jié)果,其中這三個小孩中恰好是2女1男的有3種結(jié)果,∴P(三個小孩中恰好是2女1男)=.【點睛】本題考查了畫樹狀圖求解概率,中等難度,畫出樹狀圖找到所有可能性是解題關(guān)鍵.18、-【解析】

先化簡,再解不等式組確定x的值,最后代入求值即可.【詳解】(﹣)÷,=÷=解不等式組,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1時,分式無意義,∴x=2,∴原式==﹣.19、(1);(2)﹣2<x<1【解析】

(1)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結(jié)果;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可.【詳解】(1)原式=;(2)不等式組整理得:,則不等式組的解集為﹣2<x<1.【點睛】此題考查計算能力,(1)考查分式的化簡,正確將分子與分母分解因式及按照正確運算順序進行計算是解題的關(guān)鍵;(2)是解不等式組,注意系數(shù)化為1時乘或除以的是負(fù)數(shù)時要變號.20、;;.【解析】分析:把原方程組中的第二個方程通過分解因式降次,轉(zhuǎn)化為兩個一次方程,再分別和第一方程組合成兩個新的方程組,分別解這兩個新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉(zhuǎn)化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點睛:本題考查的是二元二次方程組的解法,解題的要點有兩點:(1)把原方程組中的第2個方程通過分解因式降次轉(zhuǎn)化為兩個二元一次方程,并分別和第1個方程組合成兩個新的方程組;(2)將兩個新的方程組消去y,即可得到關(guān)于x的一元二次方程.21、(1)證明見解析;(2)證明見解析.【解析】

(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證.(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.【詳解】證明:(1)∵在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.22、(1)200名;折線圖見解析;(2)1210人.【解析】

(1)由“其他”的人數(shù)和所占百分?jǐn)?shù),求出全部調(diào)查人數(shù);先由“體育”所占百分?jǐn)?shù)和全部調(diào)查人數(shù)求出體育的人數(shù),進一步求出閱讀的人數(shù),補全折線統(tǒng)計圖;(2)利用樣本估計總體的方法計算即可解答.【詳解】(1)調(diào)查學(xué)生總?cè)藬?shù)為40÷20%=200(人),體育人數(shù)為:200×30%=60(人),閱讀人數(shù)為:200﹣(60+30+20+40)=200﹣150=50(人).補全折線統(tǒng)計圖如下:.(2)2200×=1210(人).答:估計該校學(xué)生中愛好閱讀和愛好體育的人數(shù)大約是1210人.【點睛】本題考查了統(tǒng)計知識的應(yīng)用,試題以圖表為載體,要求學(xué)生能從中提取信息來解題,與實際生活息息相關(guān),符合新課標(biāo)的理念.23、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】

(1)根據(jù)題意和表格中的數(shù)據(jù)可以求得p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:(2)根據(jù)題意和題目中的函數(shù)表達式可以解答本題;(3)根據(jù)(2)中的結(jié)果和不等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論