2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年天津市西青區(qū)中考數(shù)學(xué)考前最后一卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果一個(gè)扇形的弧長(zhǎng)等于它的半徑,那么此扇形稱(chēng)為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個(gè)圓錐,則圓錐的側(cè)面積為()A. B.π C.50 D.50π2.如圖,直線l1∥l2,以直線l1上的點(diǎn)A為圓心、適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交直線l1、l2于點(diǎn)B、C,連接AC、BC.若∠ABC=67°,則∠1=()A.23° B.46° C.67° D.78°3.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.4.下列四個(gè)幾何體中,主視圖是三角形的是()A. B. C. D.5.拋物線y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)6.我國(guó)“神七”在2008年9月26日順利升空,宇航員在27日下午4點(diǎn)30分在距離地球表面423公里的太空中完成了太空行走,這是我國(guó)航天事業(yè)的又一歷史性時(shí)刻.將423公里用科學(xué)記數(shù)法表示應(yīng)為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1067.如圖,將△ABC沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°8.某廠接到加工720件衣服的訂單,預(yù)計(jì)每天做48件,正好按時(shí)完成,后因客戶要求提前5天交貨,設(shè)每天應(yīng)多做x件才能按時(shí)交貨,則x應(yīng)滿足的方程為()A. B.C. D.9.如圖,在半徑為5的⊙O中,弦AB=6,點(diǎn)C是優(yōu)弧上一點(diǎn)(不與A,B重合),則cosC的值為()A. B. C. D.10.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°11.如圖,BC是⊙O的直徑,A是⊙O上的一點(diǎn),∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°12.已知a,b,c在數(shù)軸上的位置如圖所示,化簡(jiǎn)|a+c|-|a-2b|-|c+2b|的結(jié)果是()A.4b+2c B.0 C.2c D.2a+2c二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個(gè)動(dòng)點(diǎn),且滿足BE=CF,設(shè)AE,BF交于點(diǎn)G,連接DG,則DG的最小值為_(kāi)______.14.如圖,在平行四邊形中,點(diǎn)在邊上,將沿折疊得到,點(diǎn)落在對(duì)角線上.若,,,則的周長(zhǎng)為_(kāi)_______.15.一個(gè)不透明的盒子里有n個(gè)除顏色外其他完全相同的小球,其中有9個(gè)黃球每次摸球前先將盒子里的球搖勻,任意摸出一個(gè)球記下顏色后放回盒子,通過(guò)大量重復(fù)摸球試驗(yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計(jì)盒子中小球的個(gè)數(shù)是_______.16.如圖,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=6x17.如圖,圓錐底面半徑為rcm,母線長(zhǎng)為10cm,其側(cè)面展開(kāi)圖是圓心角為216°的扇形,則r的值為.18.不透明的袋子里裝有2個(gè)白球,1個(gè)紅球,這些球除顏色外無(wú)其他差別,從袋子中隨機(jī)摸出1個(gè)球,則摸出白球的概率是________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線l與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為1.(1)求A,B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;(1)P是線段AC上的一個(gè)動(dòng)點(diǎn)(P與A,C不重合),過(guò)P點(diǎn)作y軸的平行線交拋物線于點(diǎn)E,求△ACE面積的最大值;(3)若直線PE為拋物線的對(duì)稱(chēng)軸,拋物線與y軸交于點(diǎn)D,直線AC與y軸交于點(diǎn)Q,點(diǎn)M為直線PE上一動(dòng)點(diǎn),則在x軸上是否存在一點(diǎn)N,使四邊形DMNQ的周長(zhǎng)最小?若存在,求出這個(gè)最小值及點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(4)點(diǎn)H是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、H四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.20.(6分)定義:若四邊形中某個(gè)頂點(diǎn)與其它三個(gè)頂點(diǎn)的距離相等,則這個(gè)四邊形叫做等距四邊形,這個(gè)頂點(diǎn)叫做這個(gè)四邊形的等距點(diǎn).(1)判斷:一個(gè)內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點(diǎn),請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找出C、D兩個(gè)格點(diǎn),使得以A、B、C、D為頂點(diǎn)的四邊形為互不全等的“等距四邊形”,畫(huà)出相應(yīng)的“等距四邊形”,并寫(xiě)出該等距四邊形的端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng).端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為端點(diǎn)均為非等距點(diǎn)的對(duì)角線長(zhǎng)為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點(diǎn)的等距四邊形,求∠BCD的度數(shù).21.(6分)已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.22.(8分)如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.23.(8分)已知:如圖,∠ABC,射線BC上一點(diǎn)D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.24.(10分)為倡導(dǎo)“低碳生活”,人們常選擇以自行車(chē)作為代步工具、圖(1)所示的是一輛自行車(chē)的實(shí)物圖.圖(2)是這輛自行車(chē)的部分幾何示意圖,其中車(chē)架檔AC與CD的長(zhǎng)分別為45cm和60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm.點(diǎn)A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求車(chē)架檔AD的長(zhǎng);(2)求車(chē)座點(diǎn)E到車(chē)架檔AB的距離(結(jié)果精確到1cm).25.(10分)解分式方程:x+1x-1-26.(12分)某市為了解市民對(duì)已閉幕的某一博覽會(huì)的總體印象,利用最新引進(jìn)的“計(jì)算機(jī)輔助電話訪問(wèn)系統(tǒng)”(簡(jiǎn)稱(chēng)CATI系統(tǒng)),采取電腦隨機(jī)抽樣的方式,對(duì)本市年齡在16~65歲之間的居民,進(jìn)行了400個(gè)電話抽樣調(diào)查.并根據(jù)每個(gè)年齡段的抽查人數(shù)和該年齡段對(duì)博覽會(huì)總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問(wèn)題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對(duì)博覽會(huì)總體印象感到滿意,請(qǐng)你求出31~40歲年齡段的滿意人數(shù),并補(bǔ)全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.27.(12分)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O.畫(huà)出△AOB平移后的三角形,其平移后的方向?yàn)樯渚€AD的方向,平移的距離為AD的長(zhǎng).觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請(qǐng)證明你的結(jié)論.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)新定義得到扇形的弧長(zhǎng)為5,然后根據(jù)扇形的面積公式求解.【詳解】解:圓錐的側(cè)面積=?5?5=.故選A.【點(diǎn)睛】本題考查圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).2、B【解析】

根據(jù)圓的半徑相等可知AB=AC,由等邊對(duì)等角求出∠ACB,再由平行得內(nèi)錯(cuò)角相等,最后由平角180°可求出∠1.【詳解】根據(jù)題意得:AB=AC,∴∠ACB=∠ABC=67°,∵直線l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46o.故選B.【點(diǎn)睛】本題考查等腰三角形的性質(zhì),平行線的性質(zhì),熟練根據(jù)這些性質(zhì)得到角之間的關(guān)系是關(guān)鍵.3、C【解析】

根據(jù)題意畫(huà)出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長(zhǎng)為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點(diǎn)睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問(wèn)題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.4、D【解析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個(gè)錐體,是長(zhǎng)方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個(gè)錐體,只有D是錐體.故選D.【點(diǎn)睛】此題主要考查了幾何體的三視圖,主要考查同學(xué)們的空間想象能力.5、C【解析】

根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k)進(jìn)行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(2,5),故選C.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點(diǎn)式,可確定拋物線的開(kāi)口方向,頂點(diǎn)坐標(biāo)(對(duì)稱(chēng)軸),最大(最小)值,增減性等.6、C【解析】423公里=423000米=4.23×105米.故選C.7、A【解析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進(jìn)而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點(diǎn)睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用這些知識(shí)解決問(wèn)題,學(xué)會(huì)把條件轉(zhuǎn)化的思想,屬于中考??碱}型.8、D【解析】

因客戶的要求每天的工作效率應(yīng)該為:(48+x)件,所用的時(shí)間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時(shí)間減去提前完成時(shí)間,可以列出方程:.故選D.9、D【解析】解:作直徑AD,連結(jié)BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點(diǎn)睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了解直角三角形.10、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點(diǎn):1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定11、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進(jìn)而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點(diǎn)睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.12、A【解析】由數(shù)軸上點(diǎn)的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點(diǎn)睛:本題考查了整式的加減以及數(shù)軸,涉及的知識(shí)有:去括號(hào)法則以及合并同類(lèi)項(xiàng)法則,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、﹣1【解析】

先由圖形確定:當(dāng)O、G、D共線時(shí),DG最?。桓鶕?jù)正方形的性質(zhì)證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長(zhǎng),從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點(diǎn)G在以AB為直徑的圓上,由圖形可知:當(dāng)O、G、D在同一直線上時(shí),DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點(diǎn)睛】本題考查了正方形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握正方形的性質(zhì)與全等三角形的判定與性質(zhì).14、6.【解析】

先根據(jù)平行線的性質(zhì)求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質(zhì)可得AF=AB=3,EF=BE,從而可求出的周長(zhǎng).【詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長(zhǎng)=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),勾股定理,折疊的性質(zhì),三角形的周長(zhǎng)計(jì)算方法,運(yùn)用轉(zhuǎn)化思想是解題的關(guān)鍵.15、1【解析】

根據(jù)利用頻率估計(jì)概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計(jì)算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個(gè)不透明的盒子里大約有1個(gè)除顏色外其他完全相同的小球.故答案為1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.當(dāng)實(shí)驗(yàn)的所有可能結(jié)果不是有限個(gè)或結(jié)果個(gè)數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時(shí),一般通過(guò)統(tǒng)計(jì)頻率來(lái)估計(jì)概率.16、1.【解析】

根據(jù)反比例函數(shù)的性質(zhì)可判斷點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),則S△BOC=S△AOC,再利用反比例函數(shù)k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.17、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長(zhǎng)為10cm,其側(cè)面展開(kāi)圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點(diǎn)】圓錐的計(jì)算.18、【解析】

先求出球的總數(shù),再根據(jù)概率公式求解即可.【詳解】∵不透明的袋子里裝有2個(gè)白球,1個(gè)紅球,∴球的總數(shù)=2+1=3,∴從袋子中隨機(jī)摸出1個(gè)球,則摸出白球的概率=.故答案為.【點(diǎn)睛】本題考查的是概率公式,熟知隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點(diǎn)坐標(biāo)為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)式求出直線AC的函數(shù)表達(dá)式;

(1)設(shè)P點(diǎn)的橫坐標(biāo)為x(-1≤x≤1),求出P、E的坐標(biāo),用x表示出線段PE的長(zhǎng),求出PE的最大值,進(jìn)而求出△ACE的面積最大值;

(3)根據(jù)D點(diǎn)關(guān)于PE的對(duì)稱(chēng)點(diǎn)為點(diǎn)C(1,-3),點(diǎn)Q(0,-1)點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為M(0,1),則四邊形DMNQ的周長(zhǎng)最小,求出直線CM的解析式為y=-1x+1,進(jìn)而求出最小值和點(diǎn)M,N的坐標(biāo);

(4)結(jié)合圖形,分兩類(lèi)進(jìn)行討論,①CF平行x軸,如圖1,此時(shí)可以求出F點(diǎn)兩個(gè)坐標(biāo);②CF不平行x軸,如題中的圖1,此時(shí)可以求出F點(diǎn)的兩個(gè)坐標(biāo).【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點(diǎn)的橫坐標(biāo)x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設(shè)P點(diǎn)的橫坐標(biāo)為x(﹣1≤x≤1),則P、E的坐標(biāo)分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點(diǎn)在E點(diǎn)的上方,∴當(dāng)時(shí),PE的最大值△ACE的面積最大值(3)D點(diǎn)關(guān)于PE的對(duì)稱(chēng)點(diǎn)為點(diǎn)C(1,﹣3),點(diǎn)Q(0,﹣1)點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為K(0,1),連接CK交直線PE于M點(diǎn),交x軸于N點(diǎn),可求直線CK的解析式為,此時(shí)四邊形DMNQ的周長(zhǎng)最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時(shí)的D和H點(diǎn)重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點(diǎn)A和F的坐標(biāo)中點(diǎn)和點(diǎn)C和點(diǎn)H的坐標(biāo)中點(diǎn)相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點(diǎn)坐標(biāo)為F1(1,0),F(xiàn)1(﹣3,0),,.【點(diǎn)睛】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點(diǎn)坐標(biāo),待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質(zhì)等,綜合性比較強(qiáng),難度較大.20、(1)是;(2)見(jiàn)解析;(3)150°.【解析】

(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫(huà)出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【詳解】解:(1)一個(gè)內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點(diǎn)的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【點(diǎn)睛】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等是解決問(wèn)題的關(guān)鍵.21、證明見(jiàn)解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對(duì)應(yīng)相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形.22、證明見(jiàn)解析.【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉(zhuǎn)而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點(diǎn):旋轉(zhuǎn)的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.23、作圖見(jiàn)解析.【解析】

由題意可知,先作出∠ABC的平分線,再作

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論