版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省日照市莒縣2024年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.42.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④3.不等式組的正整數(shù)解的個數(shù)是()A.5 B.4 C.3 D.24.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體5.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是()A. B. C. D.6.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<37.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+18.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(
)A.9分B.8分C.7分D.6分9.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°10.如圖,網(wǎng)格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.二、填空題(共7小題,每小題3分,滿分21分)11.對于實數(shù)a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.12.化簡:______.13.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.14.分解因式:=__________________.15.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進行無滑動滾動,使半圓的直徑與直線b重合為止,則圓心O運動路徑的長度等于_____.16.正六邊形的每個內(nèi)角等于______________°.17.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.三、解答題(共7小題,滿分69分)18.(10分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時間t(h)的函數(shù)關系的圖象,根據(jù)圖象解答下列問題:(1)請用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時,兩人相距15km?19.(5分)某汽車制造公司計劃生產(chǎn)A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產(chǎn)方案?(2)該公司按照哪種方案生產(chǎn)汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產(chǎn)甲乙兩種鋼板(兩種都生產(chǎn)),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產(chǎn)方案?(直接寫出答案)20.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.21.(10分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉,使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉.在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.22.(10分)先化簡,再求值:,其中a是方程a(a+1)=0的解.23.(12分)某初中學校組織200位同學參加義務植樹活動.甲、乙兩位同學分別調(diào)查了30位同學的植樹情況,并將收集的數(shù)據(jù)進行了整理,繪制成統(tǒng)計表1和表2:表1:甲調(diào)查九年級30位同學植樹情況每人植樹棵數(shù)78910人數(shù)36156表2:乙調(diào)查三個年級各10位同學植樹情況每人植樹棵數(shù)678910人數(shù)363126根據(jù)以上材料回答下列問題:(1)關于于植樹棵數(shù),表1中的中位數(shù)是棵;表2中的眾數(shù)是棵;(2)你認為同學(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動情況;(3)在問題(2)的基礎上估計本次活動200位同學一共植樹多少棵?24.(14分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.2、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經(jīng)過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.3、C【解析】
先解不等式組得到-1<x≤3,再找出此范圍內(nèi)的正整數(shù).【詳解】解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
則不等式組的解集為-1<x≤3,
所以不等式組的正整數(shù)解有1、2、3這3個,
故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關鍵是正確得出一元一次不等式組的解集.4、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.5、B【解析】解:當點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減??;當點P在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;故選B.6、B【解析】
根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.7、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質(zhì)結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關鍵.8、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).9、D【解析】
能說明是假命題的反例就是能滿足已知條件,但不滿足結論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.10、B【解析】
以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
根據(jù)新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據(jù)題意正確得到方程是解題的關鍵.12、3【解析】分析:根據(jù)算術平方根的概念求解即可.詳解:因為32=9所以=3.故答案為3.點睛:此題主要考查了算術平方根的意義,關鍵是確定被開方數(shù)是哪個正數(shù)的平方.13、【解析】
解:根據(jù)題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【點睛】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關鍵.14、【解析】
原式提取2,再利用完全平方公式分解即可.【詳解】原式【點睛】先考慮提公因式法,再用公式法進行分解,最后考慮十字相乘,差項補項等方法.15、5π【解析】
根據(jù)題意得出球在無滑動旋轉中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運動軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉圓的周長,則圓心O運動路徑的長度為:×2π×5=5π,故答案為5π.【點睛】本題考查的是弧長的計算和旋轉的知識,解題關鍵是確定半圓作無滑動翻轉所經(jīng)過的路線并求出長度.16、120【解析】試題解析:六邊形的內(nèi)角和為:(6-2)×180°=720°,∴正六邊形的每個內(nèi)角為:=120°.考點:多邊形的內(nèi)角與外角.17、2【解析】
根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時或小時,兩人相距15km.【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得s與t的函數(shù)關系式;(2)根據(jù)(1)中的函數(shù)解析式可以解答本題.【詳解】解:(1)設sA與t的函數(shù)關系式為sA=kt+b,,得,即sA與t的函數(shù)關系式為sA=45t﹣45,設sB與t的函數(shù)關系式為sB=at,60=3a,得a=20,即sB與t的函數(shù)關系式為sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2=,,,即在A出發(fā)后小時或小時,兩人相距15km.【點睛】本題主要考查一次函數(shù)的應用,涉及到直線上點的坐標與方程,利用待定系數(shù)法求一次函數(shù)的解析式是解題的關鍵.19、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】
(1)設A型號的轎車為x輛,可根據(jù)題意列出不等式組,根據(jù)問題的實際意義推出整數(shù)值;(2)根據(jù)“利潤=售價-成本”列出一次函數(shù)的解析式解答;(3)根據(jù)(2)中方案設計計算.【詳解】(1)設生產(chǎn)A型號x輛,則B型號(40-x)輛153634x+42(40-x)1552解得,x可以取值16,17,18共有三種方案,分別為A型號16輛時,B型號24輛A型號17輛時,B型號23輛A型號18輛時,B型號22輛(2)設總利潤W萬元則W==w隨x的增大而減小當時,萬元(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【點睛】本題主要考查了一次函數(shù)的應用,以及一元一次不等式組的應用,此題是典型的數(shù)學建模問題,要先將實際問題轉化為不等式組解應用題.20、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】
(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側,根據(jù)二次函數(shù)圖象的性質(zhì)可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質(zhì)、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質(zhì)等知識點.解(1)的關鍵是掌握待定系數(shù)法,解(2)的關鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關鍵是證明△BNP≌△PMQ.21、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【解析】
(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024國際物流與分銷合作合同
- 2024企業(yè)員工保密與競業(yè)限制協(xié)議
- 小學學生睡眠管理制度
- 2024年全球社交媒體廣告投放合同
- 2024年衛(wèi)星導航系統(tǒng)研發(fā)與產(chǎn)業(yè)化合作協(xié)議
- 2024年城市防洪排澇設施改造合同
- 2023年溫州市現(xiàn)代服務業(yè)發(fā)展集團有限公司招聘考試真題
- 2024全新環(huán)保技術許可使用合同
- 2023年榆林市教師考試真題
- 2024園林綠化工程進度與質(zhì)量驗收合同
- 青少年法治教育實踐基地建設活動實施方案
- 綠化養(yǎng)護續(xù)簽合同申請書范文
- 教科(2024秋)版科學三年級上冊2.6 我們來做“熱氣球”教學設計
- 追要工程款居間合同范本2024年
- 2024至2030年中國氮化硅軸承球行業(yè)市場全景調(diào)查及投資前景分析報告
- 三年級上《時分秒》教材解讀
- 公司培訓工作報告6篇
- 魚苗繁育中的親魚選擇與培育考核試卷
- 醫(yī)療器械相關性壓力性損傷
- 醫(yī)療保險參與者自費項目知情同意簽字管理制度
- 外圓內(nèi)方外方內(nèi)圓公開課獲獎課件
評論
0/150
提交評論