版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省遵義市桐梓縣重點名校2024屆中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.152.如圖,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,則∠EDC等于()A.10° B.12.5° C.15° D.20°3.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)4.-10-4的結果是()A.-7B.7C.-14D.135.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=6.計算(-1)×2的結果是()A.-2 B.-1 C.1 D.27.舌尖上的浪費讓人觸目驚心,據(jù)統(tǒng)計中國每年浪費的食物總量折合糧食約499.5億千克,這個數(shù)用科學記數(shù)法應表示為()A.4.995×1011 B.49.95×1010C.0.4995×1011 D.4.995×10108.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.9.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據(jù)是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣110.已知二次函數(shù),當自變量取時,其相應的函數(shù)值小于0,則下列結論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關系不確定11.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a12.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤二、填空題:(本大題共6個小題,每小題4分,共24分.)13.直線y=﹣x+1分別交x軸,y軸于A、B兩點,則△AOB的面積等于___.14.2018年5月13日,中國首艘國產(chǎn)航空母艦首次執(zhí)行海上試航任務,其排水量超過6萬噸,將數(shù)60000用科學記數(shù)法表示應為_______________.15.分解因式:m3–m=_____.16.在某公益活動中,小明對本年級同學的捐款情況進行了統(tǒng)計,繪制成如圖所示的不完整的統(tǒng)計圖,其中捐10元的人數(shù)占年級總人數(shù)的25%,則本次捐款20元的人數(shù)為______人.17.因式分解:9a3b﹣ab=_____.18.分解因式6xy2-9x2y-y3=_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小新家、小華家和書店依次在東風大街同一側(忽略三者與東風大街的距離).小新小華兩人同時各自從家出發(fā)沿東風大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關系式.(3)直接寫出兩人離小華家的距離相等時x的值.20.(6分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結果即可).21.(6分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.22.(8分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出m=,n=;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網(wǎng)購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.23.(8分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.24.(10分)為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設立了以我國古代數(shù)學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:“祖沖之獎”的學生成績統(tǒng)計表:分數(shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補充完整;(2)獲得“祖沖之獎”的學生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.25.(10分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.26.(12分)某商場甲、乙兩名業(yè)務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據(jù)上面的數(shù)據(jù),將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:結論:人員平均數(shù)(萬元)中位數(shù)(萬元)眾數(shù)(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業(yè)務員能獲得獎金的月份有______個;(2)可以推斷出_____業(yè)務員的銷售業(yè)績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)27.(12分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數(shù)的圖象與性質,平行四邊形的面積,綜合性比較強,難度較大.2、C【解析】試題分析:根據(jù)三角形的三線合一可求得∠DAC及∠ADE的度數(shù),根據(jù)∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故選C.考點:本題主要考查了等腰三角形的性質,三角形內角和定理點評:解答本題的關鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.3、A【解析】
分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.4、C【解析】解:-10-4=-1.故選C.5、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.6、A【解析】
根據(jù)兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關鍵是熟練掌握有理數(shù)的乘法法則.7、D【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將499.5億用科學記數(shù)法表示為:4.995×1.
故選D.【點睛】此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、D【解析】
根據(jù)拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應在二、四象限,一次函數(shù)過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.9、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.10、B【解析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側,x=m-1時,y>0,故選B.【點睛】本題考查二次函數(shù)圖象上的點的坐標特征,解題的關鍵是學會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結合的思想.11、B【解析】
先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.12、D【解析】
根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數(shù)形結合的數(shù)學思想.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
先求得直線y=﹣x+1與x軸,y軸的交點坐標,再根據(jù)三角形的面積公式求得△AOB的面積即可.【詳解】∵直線y=﹣x+1分別交x軸、y軸于A、B兩點,∴A、B點的坐標分別為(1,0)、(0,1),S△AOB=OA?OB=×1×1=,故答案為.【點睛】本題考查了直線與坐標軸的交點坐標及三角形的面積公式,正確求得直線y=﹣x+1與x軸、y軸的交點坐標是解決問題的關鍵.14、【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】60000小數(shù)點向左移動4位得到6,所以60000用科學記數(shù)法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.15、m(m+1)(m-1)【解析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點睛】本題考查因式分解,掌握因式分解的技巧是解題關鍵.16、35【解析】分析:根據(jù)捐款10元的人數(shù)占總人數(shù)25%可得捐款總人數(shù),將總人數(shù)減去其余各組人數(shù)可得答案.詳解:根據(jù)題意可知,本年級捐款捐款的同學一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點睛:本題考查了條形統(tǒng)計圖.計算出捐款總人數(shù)是解決問題的關鍵.17、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.18、-y(3x-y)2【解析】
先提公因式-y,然后再利用完全平方公式進行分解即可得.【詳解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案為:-y(3x-y)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握因式分解的方法及步驟是解題的關鍵.因式分解的一般步驟:一提(公因式),二套(套用公式),注意一定要分解到不能再分解為止.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解析】
(1)先根據(jù)小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據(jù)小華的速度即可畫出y2與x的函數(shù)圖象;(2)設所求函數(shù)關系式為y1=kx+b,由圖可知函數(shù)圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數(shù)關系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數(shù)圖象為:故小新的速度為60米/分,a=960;(2)當4≤x≤20時,設所求函數(shù)關系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數(shù)關系式為:y=240﹣6x,①當兩人分別在小華家兩側時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當小新經(jīng)過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.20、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】
(1)設OD為x,則BD=AD=3,在RT△ODA中應用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點B'落在A點右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點B'落在A點左邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)綜上所述:B'(1+,0),(1﹣,0)【點睛】本題結合翻折綜合考查了三角形相似和特殊角的三角函數(shù),第3問中理解B’點的兩種情況是解題關鍵.21、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進而可根據(jù)點B的坐標來確定點A的坐標,已知OC=1OA,即可得到點C的坐標,利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關于拋物線對稱軸的對稱點滿足P點的要求,坐標易求得;②PD=PC,可設出點P的坐標,然后表示出PC、PD的長,根據(jù)它們的等量關系列式求出點P的坐標.(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標;②M、N在x軸上方,且以N為直角頂點時,可設出點N的坐標,根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標,聯(lián)立拋物線的解析式,即可得到關于N點橫坐標的方程,從而求得點Q的坐標;根據(jù)拋物線的對稱性知:Q關于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂點,且M、N在x軸上方時;設Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對稱性可得Q1(,0);③若N是直角頂點,且M、N在x軸下方時;同理設Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對稱性可得Q5(+2,0).【點睛】本題考查了二次函數(shù)的知識點,解題的關鍵是熟練的掌握二次函數(shù)相關知識點.22、(1)100、35;(2)補圖見解析;(3)800人;(4)【解析】分析:(1)由共享單車人數(shù)及其百分比求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得其百分比n的值;(2)總人數(shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總人數(shù)求得其百分比即可補全兩個圖形;(3)總人數(shù)乘以樣本中微信人數(shù)所占百分比可得答案;(4)列表得出所有等可能結果,從中找到這兩位同學最認可的新生事物不一樣的結果數(shù),根據(jù)概率公式計算可得.詳解:(1)∵被調查的總人數(shù)m=10÷10%=100人,∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應的百分比為×100%=40%,補全圖形如下:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數(shù)為2000×40%=800人;(4)列表如下:共有12種情況,這兩位同學最認可的新生事物不一樣的有10種,所以這兩位同學最認可的新生事物不一樣的概率為.點睛:本題考查的是用列表法或畫樹狀圖法求概率以及扇形統(tǒng)計圖與條形統(tǒng)計圖的知識.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1);(2)【解析】
(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結果,每種結果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)【點睛】本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)劉徽獎的人數(shù)為人,補全統(tǒng)計圖見解析;(2)獲得“祖沖之獎”的學生成績的中位數(shù)是90分,眾數(shù)是90分;(3)(點在第二象限).【解析】
(1)先根據(jù)祖沖之獎的人數(shù)及其百分比求得總人數(shù),再根據(jù)扇形圖求出趙爽獎、楊輝獎的人數(shù),繼而根據(jù)各獎項的人數(shù)之和等于總人數(shù)求得劉徽獎的人數(shù),據(jù)此可得;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)列表得出所有等可能結果,再找到這個點在第二象限的結果,根據(jù)概率公式求解可得.【詳解】(1)∵獲獎的學生人數(shù)為20÷10%=200人,∴趙爽獎的人數(shù)為200×24%=48人,楊輝獎的人數(shù)為200×46%=92人,則劉徽獎的人數(shù)為200﹣(20+48+92)=40,補全統(tǒng)計圖如下:故答案為40;(2)獲得“祖沖之獎”的學生成績的中位數(shù)是90分,眾數(shù)是90分.故答案為90、90;(3)列表法:∵第二象限的點有(﹣2,2)和(﹣1,2),∴P(點在第二象限).【點睛】本題考查了用列表法或畫樹狀圖法求概率、頻數(shù)分布直方圖以及利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,也考查列表法或畫樹狀圖法求概率.25、(1)直線l與⊙O相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 捐資助學倡議書模板6篇
- 店鋪使用權和代理權轉讓合同書(3篇)
- 第二十六章 二次函數(shù)(64道壓軸題專練)
- 代詞-2023年中考英語知識清單(原卷版)
- 天津市五區(qū)縣重點校聯(lián)考2024-2025學年高二上學期11月期中化學試題(含答案)
- 黑龍江省大慶市肇源縣聯(lián)盟學校2024-2025學年七年級上學期期中地理試題(含答案)
- 上海地區(qū)高考語文五年高考真題匯編-作文
- 2024年湖南省公務員考試《行測》真題及答案解析
- 企業(yè)間合作戰(zhàn)略合同模板集
- 不動產(chǎn)投資合作協(xié)議書應注意問題
- 2023年四川涼山州木里重點國有林保護局招聘18人筆試備考試題及答案解析
- 思想意識形態(tài)滲透就在你我身邊
- 小學一年級寫字教案()
- 食品營養(yǎng)學(暨南大學)智慧樹知到答案章節(jié)測試2023年
- 堅定理想信念的心得體會
- GBZ/T(衛(wèi)生) 240.11-2011化學品毒理學評價程序和試驗方法第11部分:體內哺乳動物骨髓嗜多染紅細胞微核試驗
- GB/T 21832.2-2018奧氏體-鐵素體型雙相不銹鋼焊接鋼管第2部分:流體輸送用管
- GA 1800.2-2021電力系統(tǒng)治安反恐防范要求第2部分:火力發(fā)電企業(yè)
- 數(shù)字經(jīng)濟與智慧物流發(fā)展趨勢課件
- 企業(yè)家刑事法律風險及其防范(課件)
- 針刺方法課件
評論
0/150
提交評論