版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省臺州市團(tuán)隊六校中考三模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°2.如果一個正多邊形內(nèi)角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.3.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體4.下面的統(tǒng)計圖反映了我國最近十年間核電發(fā)電量的增長情況,根據(jù)統(tǒng)計圖提供的信息,下列判斷合理的是()A.2011年我國的核電發(fā)電量占總發(fā)電量的比值約為1.5%B.2006年我國的總發(fā)電量約為25000億千瓦時C.2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的2倍D.我國的核電發(fā)電量從2008年開始突破1000億千瓦時5.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.166.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°7.把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.178.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊9.二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.10.如圖,平面直角坐標(biāo)系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以O(shè)C為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.12.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.13.計算:()?=__.14.用不等號“>”或“<”連接:sin50°_____cos50°.15.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.16.若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____.17.在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結(jié)果用含有a,b,c的式子表示)三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:當(dāng)轎車剛到乙地時,此時貨車距離乙地千米;當(dāng)轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.19.(5分)先化簡,再求值:(1﹣)÷,其中a=﹣1.20.(8分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標(biāo),若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標(biāo).21.(10分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當(dāng)∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。22.(10分)某中學(xué)響應(yīng)“陽光體育”活動的號召,準(zhǔn)備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學(xué)根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學(xué)最多可以購買多少個籃球?23.(12分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側(cè)的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關(guān)系,并說明理由;(2)若∠A=30°,AB=4,求的長.24.(14分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)四邊形的內(nèi)角和與直角三角形中兩個銳角關(guān)系即可求解.【詳解】解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知四邊形的內(nèi)角和為360°.2、A【解析】
首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內(nèi)角和與外角和的知識.注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.3、D【解析】
本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側(cè)視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.4、B【解析】
由折線統(tǒng)計圖和條形統(tǒng)計圖對各選項逐一判斷即可得.【詳解】解:A、2011年我國的核電發(fā)電量占總發(fā)電量的比值大于1.5%、小于2%,此選項錯誤;B、2006年我國的總發(fā)電量約為500÷2.0%=25000億千瓦時,此選項正確;C、2013年我國的核電發(fā)電量占總發(fā)電量的比值是2006年的顯然不到2倍,此選項錯誤;D、我國的核電發(fā)電量從2012年開始突破1000億千瓦時,此選項錯誤;故選:B.【點睛】本題考查的是條形統(tǒng)計圖和折線統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況.5、B【解析】
根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強,熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.6、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應(yīng)用.7、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進(jìn)行判斷,找出滿足條件的點.8、C【解析】分析:由A、B、C三點表示的數(shù)之間的關(guān)系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關(guān)系分別找出各點代表的數(shù)是關(guān)鍵.9、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負(fù)數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標(biāo)取到最大值,結(jié)合圖象最小值只能由x=m時求出.②頂點縱坐標(biāo)取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當(dāng)m≤0≤x≤n<1時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當(dāng)m≤0≤x≤1≤n時,當(dāng)x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.10、C【解析】
設(shè)B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設(shè)B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標(biāo)特征、相似三角形、翻折等,解題關(guān)鍵是通過設(shè)點B的坐標(biāo),表示出點A′的坐標(biāo).二、填空題(共7小題,每小題3分,滿分21分)11、1:1【解析】
根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.12、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據(jù)圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據(jù)余弦的定義求解,而圓中直徑所對的圓周角是直角.13、1【解析】試題分析:首先進(jìn)行通分,然后再進(jìn)行因式分解,從而進(jìn)行約分得出答案.原式=.14、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當(dāng)角度在0°~90°間變化時,①正弦值隨著角度的增大(或減小)而增大(或減?。虎谟嘞抑惦S著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅虎壅兄惦S著角度的增大(或減?。┒龃螅ɑ驕p?。?5、x≠﹣1【解析】
分式有意義的條件是分母不等于零.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≠0,解得:x≠-1.
故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關(guān)鍵.16、AC⊥BD【解析】
根據(jù)題意畫出相應(yīng)的圖形,如圖所示,由四邊形EFGH為矩形,根據(jù)矩形的四個角為直角得到∠FEH=90°,又EF為三角形ABD的中位線,根據(jù)中位線定理得到EF與DB平行,根據(jù)兩直線平行,同旁內(nèi)角互補得到∠EMO=90°,同理根據(jù)三角形中位線定理得到EH與AC平行,再根據(jù)兩直線平行,同旁內(nèi)角互補得到∠AOD=90°,根據(jù)垂直定義得到AC與BD垂直.【詳解】∵四邊形EFGH是矩形,∴∠FEH=90°,又∵點E、F、分別是AD、AB、各邊的中點,∴EF是三角形ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD各邊的中點,∴EH是三角形ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為:AC⊥BD.【點睛】此題考查了矩形的性質(zhì),三角形的中位線定理,以及平行線的性質(zhì).根據(jù)題意畫出圖形并熟練掌握矩形性質(zhì)及三角形中位線定理是解題關(guān)鍵.17、2a+12b【解析】如圖2,翻折4次時,左側(cè)邊長為c,如圖2,翻折5次,左側(cè)邊長為a,所以翻折4次后,如圖1,由折疊得:AC=A===,所以圖形的周長為:a+c+5b,因為∠ABC<20°,所以,翻折9次后,所得圖形的周長為:2a+10b,故答案為:2a+10b.三、解答題(共7小題,滿分69分)18、(1)30;(2)當(dāng)x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】
(1)根據(jù)圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據(jù)圖象得出貨車出發(fā)后4.5小時轎車到達(dá)乙地,由此求出轎車到達(dá)乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應(yīng)的函數(shù)關(guān)系式,再根據(jù)兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據(jù)圖象信息:貨車的速度V貨=,∵轎車到達(dá)乙地的時間為貨車出發(fā)后4.5小時,∴轎車到達(dá)乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達(dá)乙地后,貨車距乙地30千米.故答案為30;(2)設(shè)CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當(dāng)x=3.9時,轎車與貨車相遇;(3)當(dāng)x=2.5時,y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時.答:在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,x的值為3.5或4.3小時.【點睛】本題考查了一次函數(shù)的應(yīng)用,對一次函數(shù)圖象的意義的理解,待定系數(shù)法求一次函數(shù)的解析式的運用,行程問題中路程=速度×?xí)r間的運用,本題有一定難度,其中求出貨車與轎車的速度是解題的關(guān)鍵.19、原式==﹣2.【解析】分析:原式利用分式混合運算順序和運算法則化簡,再將a的值代入計算可得.詳解:原式===,當(dāng)a=﹣1時,原式==﹣2.點睛:本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式混合運算順序和運算法則.20、(1)y=﹣x2﹣x+3;(2)①點D坐標(biāo)為(﹣,0);②點M(,0).【解析】
(1)應(yīng)用待定系數(shù)法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標(biāo),證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點D,使得△APQ和△CDO全等,當(dāng)D在線段OA上,∠QAP=∠DCO,AP=OC=3時,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點D坐標(biāo)為(-,0).由對稱性,當(dāng)點D坐標(biāo)為(,0)時,由點B坐標(biāo)為(4,0),此時點D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點D坐標(biāo)為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點N為AC中點.∴DN時△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點M(,0)【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關(guān)知識.解答時,注意數(shù)形結(jié)合.21、135°m+n【解析】試題分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.試題解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當(dāng)E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當(dāng)∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)站內(nèi)容多樣化服務(wù)合同
- 投資借貸協(xié)議
- 發(fā)展、挑戰(zhàn)與探索:轉(zhuǎn)型中的天津民營經(jīng)濟
- 金融服務(wù)業(yè)務(wù)協(xié)議
- 寫字樓租賃能源高效協(xié)議模板
- 股票配資保密協(xié)議模板
- SEO優(yōu)化服務(wù)協(xié)議
- 新中小學(xué)節(jié)能減排實施方案
- 貿(mào)易自由化、市場化與資源配置
- 農(nóng)田土地平整工程施工方案
- 化工公司安全知識競賽題庫(共1000題)
- GB/T 44421-2024矯形器配置服務(wù)規(guī)范
- 合作賣土地合同模板
- 大一統(tǒng)王朝的鞏固 課件 2024-2025學(xué)年統(tǒng)編版七年級歷史上冊
- 福建省福州市(2024年-2025年小學(xué)二年級語文)統(tǒng)編版期中考試試卷(含答案)
- 2024變電站無人機巡檢系統(tǒng)規(guī)范第1部分:技術(shù)規(guī)范
- 2024-2025學(xué)年八年級生物上冊第一學(xué)期 期末綜合模擬測試卷( 人教版)
- 綠色課程:農(nóng)村幼兒園教育質(zhì)量提升的有效探索
- 【課件】2025屆高三生物一輪復(fù)習(xí)備考策略研討
- 銀行股份有限公司同城票據(jù)交換業(yè)務(wù)操作規(guī)程(試行)
- 中能建建筑集團(tuán)有限公司招聘筆試題庫2024
評論
0/150
提交評論