版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
July2022
TITLE
doc.:IEEE802.11-22/0987r
21
Submission page
PAGE
3
XiaofeiWang(InterDigitalInc.)
IEEEP802.11
WirelessLANs
IEEE802.11AIMLTIGTechnicalReportDraft
Date:2022-07-06
Author(s):
Name
Affiliation
Address
Phone
XiaofeiWang
InterDigitalInc.
111West33rdStreet
NewYork,NY10120
USA
+1-607-592-2727
Xiaofei.wang@
MingGan
Huawei
Ming.gan@
ZinanLin
InterDigital
RuiYang
InterDigital
AiguoYan
Zeku
JunghoonSuh
Huawei
ZiyangGuo
Huawei
MarcoHernadez
NICT
LiangxiaoXin
Zeku
Abstract
ThisdocumentcontainsthetechnicalreportoftheIEEE802.11AIMLTIG.
R0:initialoutline
R1:insertionofUsecase1
R2:insertionofIntroduction
TableofContents
Introduction
Terminologies
AIML ArtificialIntelligence/MachineLearning
CSI ChannelStateInformation
UHR UltraHighReliability
Backgroundinformation
ArtificialIntelligence/MachineLearning(AI/ML)algorithmshavemadesignificantprogressandarebeingappliedinmanydomains,includingmedicaldiagnosis,speechrecognition,computervision,andintegrationofvisionandcontrolforrobotics.Inaddition,AI/MLalgorithmsareemergingasimportantcomponentsinmanyapplicationssuchasautonomousdriving,languagetranslationandhuman-machineinteractions.
TraditionalAI/MLtechniquesarebasedonacentralizedmodelwhichrequiresexchangingalargeamountofdatabetweendatasourcesandacentralizedserver.Morerecently,distributedAI/MLalgorithmssuchasfederatedlearninghavebeendevelopedthatwillallowmoreanalysisatthesourceandreducetheamountofdatathatneedtobeexchanged,thoughtheexpectedamountofexchangeddataremainssignificant.Withtheprevalenceofwirelessnetworksandcommunications,muchoftheexchangeddataisexpectedtobecarriedthroughwirelessnetworks,suchasIEEE802.11WLANnetworks.
StudieshaveshownthatAI/MLalgorithmscanhelpimprovetheperformanceforwirelesscommunicationnetworks,byprovidingbetterresourceusage,lowerenergyconsumption,higherreliabilityandmorerobustnesstoachangingenvironment.Asthesealgorithmsbecomemorematureandcosteffective,WLANmayleverageAI/MLforenhancednetworkperformanceanduserexperience.
InMay2022,theIEEE802.11WorkingGroup(WG)hasapprovedtheformingoftheAIMLTaskInterestGroup(TIG)bythefollowingmotion[1]:
Motion5:TIGRe:AI/MLusein802.11
ApproveformationofaTopicInterestGroup(TIG)to:
(a)describeusecasesforArtificialIntelligence/MachineLearning(AI/ML)applicabilityin802.11systemsand
(b)investigatethetechnicalfeasibilityoffeaturesenablingsupportofAI/ML.
TheTIGistocompleteareportonthistopicatorbeforetheMarch2023session.
ThistechnicalreportisthefinalreportoftheAIMLTIGtotheIEEE802.11WGdetailingvariousAIMLusecasesdiscussedduringtheAIMLTIG.Foreachusecase,anumberofKeyPerformanceIndicators(KPIs)havebeenidentifiedandrequirementsandtechnicalfeasibilityanalysishavebeenprovided.
AIMLUsecasesforIEEE802.11
Note:usecasespotentiallycanbeorganizedintodifferentcategories
Note:usecasespotentiallycanidentifyKPIs
Usecase1:CSIfeedbackcompression
In802.11ax[1]andthedraftof802.11be[2],theAPinitiatesthesoundingsequencebytransmittingtheNDPAframefollowedbyaNDPwhichisusedforthegenerationofVmatrixatthebeamformee.UponthereceiptoftheNDPfromthebeamformer,thebeamforeeappliesacompressionscheme(i.e.,Givensrotations)ontheVmatrixandfeedsbacktheangelesinthebeamformingreportframe.
Itisindicatedin
REF_Ref118889474\r\h
[4][3]
thathighernumberofspatialstreamshasbeenaninevitabletrendinWiFiformorethanadecade.Theprelimilaryresults
REF_Ref118889474\r\h
[4][3]
REF_Ref118889476\r\h
[5][4]
REF_Ref118889495\r\h
[6][5]
showthatMIMOwithalargenumbertransmitterantennasandalargenumberofspatialstreams(e.g.,16spatialstreams)offerremarkablesystemperformancegainsonbothSU-MIMOandMU-MIMOcases.MultiAP(MAP)maybeonepotentialfeatureinthenext802.11generation,e.g.UHR
REF_Ref118797206\r\h
[7][6]
-
REF_Ref118796138\r\h
[10][9]
.LargenumberofspatialstreamscombinedwithMAPfeaturemayfurtherincreasethesoundingfeedbackairtimeoverheadifcoordinationbetweenAPs(e.g.,jointtransmission/reception,coordinatedbeamforming)isapplied.Largeamountofoverheadorprolongedsoundingproceduresmaynegativelyimpactthelatencyandlimitthesystemperformance.Therefore,thereisaneedtoreducetheCSIoverheadespeciallywhenthenumberoftransmitterantennasgoeshigherormultipleAPsperformjointorcoordinatedtransmission.
Somestudies(e.g.,
REF_Ref118797710\r\h
[11][10]
REF_Ref118797712\r\h
[12][11]
REF_Ref118983623\r\h
[13][12]
REF_Ref118988666\r\h
[14][13]
)haveshownthatAI/MLcanefficientlyreducetheCSIfeedbackandimprovethesystemthroughput.Forexample,motivatedbythenaturethattheCSImayfallintodifferentclustersduetothechannelsimilarityofnearbySTAs,iFORalgorithm
REF_Ref118797710\r\h
[11][10]
appliestheunsupervisedlearning,K-mean,totheCSIcompressiontoclassifytheanglevectorswhicharederivedfromVmatrix.Simulationresultsshowthatfora8x2SU-MIMO,iFORusesaround8%ofthenumberofbitsrequiredbytheexistingfeedbackmechanism(802.11ax)andboostthesystemthroughputbyupto52%.In
REF_Ref118797712\r\h
[12][11]
,anotherunsupervisedlearning,DeepNeuralNetworkAutoencoder(DNN-AE)isappliedtoCSIanglevectorsandfurthercompressesthederivedangles(LB-SciFi)byleveraingthecompressioncapabilityofDNNs.ExperimentalresultsshowthatLB-SciFireducesthefeedbackoverheadby73%andincreasesthenetworkthroughputby69%onaverage.
ThisusecaseproposestoapplyAI/MLtechniquetoCSIfeedbackschemestoreducetheCSIoverheadwithminimumlossofPERperformance.
KPIsconsideredinthisusecaseareproposedasfollows:
Numberoffeedbackbitspersubcarriergroup
AchievedPER
BothSU-MIMOandMU-MIMOcasesneedtobeconsidered
AdditionalAIMLoverheadcompredwithcompressionsaving
OneexampleistheratiobetweenthenumberofadditionalbitsrequiredbyAIMLprocess(includingdatausedformodeltraining/inference
REF_Ref119303357\r\h
[15][14]
themodelparameters,theadditionalsignaling)andthenumberofbitssavedbytheCSIfeedbackscheme.Inthisexample,ifthedatausedformodeltrainingthatisperformedbytheAPfullyreliesonthelegacyCSIreport,thentheadditionalAIMLusedformodeltraining/inferencemaybe0.
Computationcomplexity/Latency:
AdditionaldelayorcomputationisintroducedbyAIMLprocessing
Eveluationmethodologyneedstobeestablished.
Usecase2
UsecaseN
RequirementsandPotentialfeaturesanalysis(highlevel)
Requirements
RequirementsUsecase1:CSIfeedbackcompression
Performanceshouldfollowtheguidiancebelow:
CSIairtimereduction:achievearitimereductionofCSIfeedbackover802.11beforagivenNrxNcMIMO,whereNristhenumberofrowsinthecompressedbeamformingfeeedbackmatrix,Ncisthenumberofcolumnsinthecompressedbeamformingfeedbackmatrix.
AdditionaloverheadusedforAIMLprocess:minimizetheadditionaloverheadusedforAIMLprocess.AdditionaloverheadmayincludethedatausedforAIMLmodeltraining/inference[14],themodelparametersandadditionalsignalling.ThedatausedforAIMLmodeltraining/inference[14]canreusethelegecyCSIreportdata.
PacketErrorrate(PER):guaranteeminimumSNRlosscomparedwith802.11betoachievethetargetPER(e.g.,1%and/or10%)atagivenMCSinalltypesofchannels
REF_Ref119303329\r\h
[16][15]
.
Computationcomplexity/Latency:minimizetheadditionalcomputationcomplexityorlatencyrequiredbytheAIMLprocess
Potentialfeaturesanalysis
Technicalfeasibilityanalysis
Standardsimpact
UsecaseofCSIfeedbackcompression
Thestandardimpactmayinclude:
Additionalsignaling(e.g.,betweenAPandnon-APSTAs)requiredbyAIMLprocessPlaceholderforadditionaltechnicalfeasibilityanalysis
Technicalfeasibility
UsecaseofCSIfeedbackcompression
Thefollowingmetricswillbestudied:
Dataavailabilityandaccesibility:TherearesomeSTAsthatareabletousethedatatoperformAIMLmodeltrainingand/orinference
REF_Ref119086275\r\h
[15][14]
.Thedatausedformodeltrainingand/orinferenceshallbeaccessiblefortheseSTAs.
AP/edgecomputingbasedAIML:Datamaybecollectedfromnon-APSTAs.Thelegeacy802.11CSIreportsmaybeusedastrainingdata.
DevicecomputingbasedAIML:DatashouldbeavailableatallSTAsthatsupportAIMLprocess.
Hardware/softwarecapability:TheSTAsthatuseAIMLtogeneratetheAIMLenabledCSIfeedbackcompressionshallhavethehardwareandsoftwarecapabilitytosupportAIMLalgorithm(s).
AP/edgecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:Extradataandmodel(e.g.,modelparameters)exchangemayberequiredtosupportAP/edgecomputingbasedAIML.However,computationisnotexpectedtobelocatedatAPoredgecomputingresourcesforwhichhighercomputationcapabilitiesisexpected.
DevicecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:STAsthatsupportAIMLmayberequiredtohaveextracomputationcapability.Extradataandmodel(e.g.,modelparameters)exchangebetweenSTAsmayalsoberequiredtosupportdevicecomputingbasedAIML.
Summary
References
11-22/597r3:May2022WorkingGroupMotions,May18,2022
IEEE802.11-REVmeD2.0,October2022
IEEEP802.11beD2.2,October2022
802.11-18/0818r3,16SpatialStreamSupportinNextGenerationWLAN
802.11-20/1877r1,16SpatialStreamSupport
802.11-20/1535r66,CompendiumofstrawpollsandpotentialchangestotheSpecificationFrameworkDocumentPart2
802.11-22/1515,Acandidatefeature:M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文工作計劃
- 電商工作計劃范文
- 十一國慶節(jié)七天假期安全教案
- 工作前安全分析管理規(guī)定
- 2025年AE活性酯市場調(diào)查報告
- 買賣合同五篇
- 七年級班務(wù)工作計劃
- 制定班級德育個人工作計劃
- 企業(yè)培訓(xùn)心得體會
- 九年級上學(xué)期語文期末考試試卷
- 期末測試卷(一)(試題)2023-2024學(xué)年二年級上冊數(shù)學(xué)蘇教版
- 2024中國華電集團(tuán)限公司校招+社招高頻難、易錯點500題模擬試題附帶答案詳解
- 國家開放大學(xué)電大《會計信息系統(tǒng)》期末終考題庫及標(biāo)準(zhǔn)參考答案
- 【飛科電器公司基于杜邦分析法的財務(wù)分析案例(7700字論文)】
- 多器官功能障礙綜合征MODS診療及護(hù)理試題
- 兒童呼吸道合胞病毒感染臨床診治試題
- 2021-2022學(xué)年廣東省廣州市花都區(qū)六年級(上)期末英語試卷
- 2024年人教版八年級生物(上冊)期末試卷及答案(各版本)
- A股上市與借殼上市詳細(xì)流程圖
- 2024年美國家用WiFi路由器市場現(xiàn)狀及上下游分析報告
- 《橡皮障的應(yīng)用方法》幻燈片課件
評論
0/150
提交評論