版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆遼寧省遼陽縣中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.52.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a63.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°4.-10-4的結(jié)果是()A.-7B.7C.-14D.135.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°6.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)7.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a68.一、單選題如圖中的小正方形邊長都相等,若△MNP≌△MEQ,則點Q可能是圖中的()A.點A B.點B C.點C D.點D9.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.1810.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.12.如圖,已知正八邊形ABCDEFGH內(nèi)部△ABE的面積為6cm1,則正八邊形ABCDEFGH面積為_____cm1.13.計算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,歸納各計算結(jié)果中的個位數(shù)字規(guī)律,猜測22019﹣1的個位數(shù)字是_____.14.分解因式:a3-12a2+36a=______.15.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設=,=,用,表示,那么=___.16.如圖,點A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負半軸上,CD=k,已知AB=2AC,E是AB的中點,且△BCE的面積是△ADE的面積的2倍,則k的值是______.三、解答題(共8題,共72分)17.(8分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出,;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?18.(8分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學為18人,因此這個人數(shù)對應的頻率就是=0.1.(1)統(tǒng)計表中的a、b、c的值;(2)請將頻數(shù)分布表直方圖補充完整;(3)求所有被調(diào)查學生課外閱讀的平均本數(shù);(4)若該校八年級共有600名學生,你認為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.19.(8分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側(cè)),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.20.(8分)在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,,求四邊形BDFG的周長.21.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.22.(10分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數(shù)式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.23.(12分)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數(shù)解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.24.如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進而依據(jù)點A的坐標得到k的值.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是利用S△AOF=12S菱形OBCA2、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關鍵是掌握各計算法則.3、B【解析】
如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【點睛】本題考查圓周角定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、C【解析】解:-10-4=-1.故選C.5、B【解析】
根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).6、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關鍵.7、D【解析】
根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關鍵.8、D【解析】
根據(jù)全等三角形的性質(zhì)和已知圖形得出即可.【詳解】解:∵△MNP≌△MEQ,∴點Q應是圖中的D點,如圖,故選:D.【點睛】本題考查了全等三角形的性質(zhì),能熟記全等三角形的性質(zhì)的內(nèi)容是解此題的關鍵,注意:全等三角形的對應角相等,對應邊相等.9、B【解析】設多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.10、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設AP=a,則BP=2a,OA=3a,設點A的坐標為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數(shù)圖象點的坐標特征、正方形的性質(zhì),解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、14【解析】
取AE中點I,連接IB,則正八邊形ABCDEFGH是由8個與△IDE全等的三角形構成.【詳解】解:取AE中點I,連接IB.則正八邊形ABCDEFGH是由8個與△IAB全等的三角形構成.∵I是AE的中點,∴S△IAB=12S則圓內(nèi)接正八邊形ABCDEFGH的面積為:8×3=14cm1.
故答案為14.【點睛】本題考查正多邊形的性質(zhì),解答此題的關鍵是作出輔助線構造出三角形.13、1【解析】
觀察給出的數(shù),發(fā)現(xiàn)個位數(shù)是循環(huán)的,然后再看2019÷4的余數(shù),即可求解.【詳解】由給出的這組數(shù)21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,個位數(shù)字1,3,1,5循環(huán)出現(xiàn),四個一組,2019÷4=504…3,∴22019﹣1的個位數(shù)是1.故答案為1.【點睛】本題考查數(shù)的循環(huán)規(guī)律,確定循環(huán)規(guī)律,找準余數(shù)是解題的關鍵.14、a(a-6)2【解析】
原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.15、【解析】
連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點睛】本題考查三角形的重心,平行線的性質(zhì),平面向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.16、【解析】試題解析:過點B作直線AC的垂線交直線AC于點F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點A的坐標為(,3),點B的坐標為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、三角形的面積公式以及勾股定理.構造直角三角形利用勾股定理巧妙得出k值是解題的關鍵.三、解答題(共8題,共72分)17、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】
(1)由共享單車人數(shù)及其百分比求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得百分比n的值;(2)總?cè)藬?shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得百分比即可補全兩個圖形;(3)總?cè)藬?shù)乘以樣本中微信人數(shù)所占的百分比可得答案.【詳解】解:(1)∵被調(diào)查總?cè)藬?shù)為m=10÷10%=100人,∴用支付寶人數(shù)所占百分比n%=,∴m=100,n=35.(2)網(wǎng)購人數(shù)為100×15%=15人,微信人數(shù)所占百分比為,補全圖形如圖:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數(shù)為2000×40%=800人.【點睛】本題考查條形統(tǒng)計圖和扇形統(tǒng)計圖的信息關聯(lián)問題,樣本估計總體問題,從不同的統(tǒng)計圖得到必要的信息是解決問題的關鍵.18、(1)10、0.28、1;(2)見解析;(3)6.4本;(4)264名;【解析】
(1)根據(jù)百分比=計算即可;(2)求出a組人數(shù),畫出直方圖即可;(3)根據(jù)平均數(shù)的定義計算即可;(4)利用樣本估計總體的思想解決問題即可;【詳解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)補全圖形如下:(3)所有被調(diào)查學生課外閱讀的平均本數(shù)==6.4(本)(4)該校八年級共有600名學生,該校八年級學生課外閱讀7本和8本的總?cè)藬?shù)有600×=264(名).【點睛】本題考查頻數(shù)分布直方圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考??碱}型.19、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進而可根據(jù)點B的坐標來確定點A的坐標,已知OC=1OA,即可得到點C的坐標,利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關于拋物線對稱軸的對稱點滿足P點的要求,坐標易求得;②PD=PC,可設出點P的坐標,然后表示出PC、PD的長,根據(jù)它們的等量關系列式求出點P的坐標.(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標;②M、N在x軸上方,且以N為直角頂點時,可設出點N的坐標,根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標,聯(lián)立拋物線的解析式,即可得到關于N點橫坐標的方程,從而求得點Q的坐標;根據(jù)拋物線的對稱性知:Q關于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂點,且M、N在x軸上方時;設Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN為等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(,0);由對稱性可得Q1(,0);③若N是直角頂點,且M、N在x軸下方時;同理設Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y為負,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣,∴Q4(-,0);由對稱性可得Q5(+2,0).【點睛】本題考查了二次函數(shù)的知識點,解題的關鍵是熟練的掌握二次函數(shù)相關知識點.20、(1)證明見解析(2)證明見解析(3)1【解析】
利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設,則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關系,解出x即可.【詳解】證明:,,,又為AC的中點,,又,,證明:,,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設,則,,在中,,解得:,舍去,,菱形BDFG的周長為1.【點睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關鍵.21、(1)(2).【解析】
(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.22、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標;(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點C作CF⊥x軸于點F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點C的坐標是(3,4)或(5,2)或(3,2).考點:一次函數(shù)綜合題.23、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據(jù)解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據(jù)邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據(jù)對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據(jù)點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據(jù)對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數(shù)解析式為y=x2﹣2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低碳環(huán)保建議書倡導書
- 二十四孝讀后感
- 個人實習總結(jié)15篇
- 下半年個人工作總結(jié)15篇
- 個人違反廉潔紀律檢討書(6篇)
- 課件轉(zhuǎn)盤游戲教學課件
- 2023年藥品流通行業(yè)運行統(tǒng)計分析報告
- 清華園學校八年級上學期第一次月考語文試題(A4版、B4版含答案)
- 九年級上學期語文期中考試試卷
- 南京航空航天大學《電磁無損檢測新技術》2021-2022學年期末試卷
- 北京地鐵鋼軌探傷車對鋼軌常見傷損的檢測_黃英杰
- 通風隊崗位說明書
- 中小學教師德能勤績廉考核表
- 混合痔優(yōu)化中醫(yī)護理方案
- Chapter 11 微生物的分化和發(fā)育
- 關于我市衛(wèi)生監(jiān)督體系建設情況的調(diào)研報告
- A760(761)E自動變速器ppt課件
- 建設工程施工現(xiàn)場項目管理人員解鎖申請表
- 防呆法(防錯法)Poka-Yoke
- 田徑運動會徑賽裁判法PPT課件
- 醫(yī)學影像技術試題
評論
0/150
提交評論