版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆河北省保定市淶水縣中考數(shù)學模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.12.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣103.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或64.如果代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥35.剪紙是我國傳統(tǒng)的民間藝術.下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.6.如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.7.如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(
)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.48.的倒數(shù)是()A.﹣ B.2 C.﹣2 D.9.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.10.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<3二、填空題(共7小題,每小題3分,滿分21分)11.反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)12.2018年貴州省公務員、人民警察、基層培養(yǎng)項目和選調(diào)生報名人數(shù)約40.2萬人,40.2萬人用科學記數(shù)法表示為_____人.13.定義:直線l1與l2相交于點O,對于平面內(nèi)任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序?qū)崝?shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,“距離坐標”是(1,2)的點的個數(shù)共有______個.14.計算:7+(-5)=______.15.一個扇形的面積是πcm,半徑是3cm,則此扇形的弧長是_____.16.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.17.分解因式:m3–m=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.19.(5分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.20.(8分)如圖,以D為頂點的拋物線y=﹣x2+bx+c交x軸于A、B兩點,交y軸于點C,直線BC的表達式為y=﹣x+1.求拋物線的表達式;在直線BC上有一點P,使PO+PA的值最小,求點P的坐標;在x軸上是否存在一點Q,使得以A、C、Q為頂點的三角形與△BCD相似?若存在,請求出點Q的坐標;若不存在,請說明理由.21.(10分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當PD∥AB時,求BP的長.22.(10分)為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數(shù)學小組隨機調(diào)查了一個班級,發(fā)現(xiàn)該班留守學生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學生,B類型留守學生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補充完整;已知該校共有2400名學生,現(xiàn)學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?23.(12分)解不等式組:并把解集在數(shù)軸上表示出來.24.(14分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
由于要求四個數(shù)的點中距離原點最遠的點,所以求這四個點對應的實數(shù)絕對值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數(shù)表示在數(shù)軸上,它們對應的點中,離原點最遠的是-1.故選A.【點睛】本題考查了實數(shù)與數(shù)軸的對應關系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.2、C【解析】
本題根據(jù)科學記數(shù)法進行計算.【詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.3、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關于h的一元二次方程,解之即可得出結(jié)論;當2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關鍵.4、C【解析】
根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.5、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.6、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最?。删€段垂直平分線性質(zhì)可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質(zhì);3.軸對稱作圖.7、C【解析】∵EF⊥AC,點G是AE中點,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個,故選C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關鍵.8、B【解析】
根據(jù)乘積是1的兩個數(shù)叫做互為倒數(shù)解答.【詳解】解:∵×1=1∴的倒數(shù)是1.故選B.【點睛】本題考查了倒數(shù)的定義,是基礎題,熟記概念是解題的關鍵.9、D【解析】
將,代入,得,,然后分析與的正負,即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【點睛】本題考查了反比例函數(shù)圖像上點的坐標特征,一次函數(shù)的圖像與性質(zhì),得出與的正負是解答本題的關鍵.10、B【解析】
根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.二、填空題(共7小題,每小題3分,滿分21分)11、y2<y1<y1.【解析】
先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號,再根據(jù)反比例函數(shù)的性質(zhì)判斷出此函數(shù)圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,∴2?m>0,∴此函數(shù)的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數(shù)圖像上點的坐標特征.12、4.02×1.【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.13、4【解析】
根據(jù)“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【點睛】本題考查了點的坐標,理解題意中距離坐標是解題的關鍵.14、2【解析】
根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關鍵.15、【解析】
根據(jù)扇形面積公式求解即可【詳解】根據(jù)扇形面積公式.可得:,,故答案:.【點睛】本題主要考查了扇形的面積和弧長之間的關系,利用扇形弧長和半徑代入公式即可求解,正確理解公式是解題的關鍵.注意在求扇形面積時,要根據(jù)條件選擇扇形面積公式.16、2﹣【解析】
過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應用,關鍵是根據(jù)圖形的對稱性分析,主要考查學生的計算能力.17、m(m+1)(m-1)【解析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點睛】本題考查因式分解,掌握因式分解的技巧是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)2.【解析】
(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.19、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;(2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.20、(1)y=﹣x2+2x+1;(2)P(,);(1)當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【解析】
(1)先求得點B和點C的坐標,然后將點B和點C的坐標代入拋物線的解析式得到關于b、c的方程,從而可求得b、c的值;(2)作點O關于BC的對稱點O′,則O′(1,1),則OP+AP的最小值為AO′的長,然后求得AO′的解析式,最后可求得點P的坐標;(1)先求得點D的坐標,然后求得CD、BC、BD的長,依據(jù)勾股定理的逆定理證明△BCD為直角三角形,然后分為△AQC∽△DCB和△ACQ∽△DCB兩種情況求解即可.【詳解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).將C(0,1)、B(1,0)代入y=﹣x2+bx+c得:,解得b=2,c=1.∴拋物線的解析式為y=﹣x2+2x+1.(2)如圖所示:作點O關于BC的對稱點O′,則O′(1,1).∵O′與O關于BC對稱,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==2.O′A的方程為y=P點滿足解得:所以P(,)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴CD=,BC=1,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴當Q的坐標為(0,0)時,△AQC∽△DCB.如圖所示:連接AC,過點C作CQ⊥AC,交x軸與點Q.∵△ACQ為直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴,即,解得:AQ=3.∴Q(9,0).綜上所述,當Q的坐標為(0,0)或(9,0)時,以A、C、Q為頂點的三角形與△BCD相似.【點睛】本題考查了二次函數(shù)的綜合應用,解題的關鍵是掌握待定系數(shù)法求二次函數(shù)的解析式、軸對稱圖形的性質(zhì)、相似三角形的性質(zhì)和判定,分類討論的思想.21、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質(zhì)即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識,把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關鍵,證到∠BAP=∠C進而得到△BAP∽△BCA是解決第(2)小題的關鍵.22、(1)10,144;(2)詳見解析;(3)96【解析】
(1)依據(jù)C類型的人數(shù)以及百分比,即可得到該班留守的學生數(shù)量,依據(jù)B類型留守學生所占的百分比,即可得到其所在扇形的圓心角的度數(shù);(2)依據(jù)D類型留守學生的數(shù)量,即可將條形統(tǒng)計圖補充完整;(3)依據(jù)D類型的留守學生所占的百分比,即可估計該校將有多少名留守學生在此關愛活動中受益.【詳解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案為10,144;(2)10﹣2﹣4﹣2=2(人),如圖所示:(3)2400××20%=96(人),答:估計該校將有96名留守學生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 入院出院轉(zhuǎn)科管理制度和標準及保障措施
- 高層建筑消防維保管理制度
- 企業(yè)晨會時間管理制度
- 幼兒園健康檢查制度整治方案
- 供應商管理制度流程
- 客戶資料管理制度
- 職業(yè)發(fā)展與晉升通道管理制度
- 患者膳食與飲食調(diào)理制度
- 組長(副組長)的職業(yè)危害防治責任制度
- 安全防護措施管理制度
- 西方文官制度和我國公務員制度的比較
- 醫(yī)保檢查自查自糾報告
- VBOXTools軟件操作手冊
- 外研版(三年級起點)五年級上冊重點知識點復習
- 2023年報告文學研究(自考)(重點)題庫(帶答案)
- 國軍淞滬會戰(zhàn)
- 2023年湖南體育職業(yè)學院高職單招(語文)試題庫含答案解析
- GB/T 39314-2020鋁合金石膏型鑄造通用技術導則
- GB/T 17252-1998聲學100kHz以下超聲壓電換能器的特性和測量
- GB 16847-1997保護用電流互感器暫態(tài)特性技術要求
- 裝飾裝修施工質(zhì)量檢查評分表
評論
0/150
提交評論