版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省黃山市~重點(diǎn)達(dá)標(biāo)名校2024年中考數(shù)學(xué)四模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.2.下列說法不正確的是()A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)B.從1,2,3,4,5中隨機(jī)抽取一個數(shù),取得奇數(shù)的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是43.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.4.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達(dá)式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+55.已知二次函數(shù)(為常數(shù)),當(dāng)自變量的值滿足時,與其對應(yīng)的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或66.已知點(diǎn)A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數(shù)y=的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y27.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差8.如果將拋物線向下平移1個單位,那么所得新拋物線的表達(dá)式是A. B. C. D.9.如圖,空心圓柱體的左視圖是()A. B. C. D.10.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點(diǎn)分別在相互垂直的射線OM,ON上滑動,下列結(jié)論:①若C,O兩點(diǎn)關(guān)于AB對稱,則OA=;②C,O兩點(diǎn)距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點(diǎn)D運(yùn)動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④11.若0<m<2,則關(guān)于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實(shí)數(shù)根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m12.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當(dāng)x=_________時,分式的值為零.14.已知a+=2,求a2+=_____.15.關(guān)于x的不等式組的整數(shù)解有4個,那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤416.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側(cè)面積為______cm217.已知整數(shù)k<5,若△ABC的邊長均滿足關(guān)于x的方程,則△ABC的周長是.18.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,AD=AE.求證:BE=CD.20.(6分)新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套房面積均為120米2.若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:降價8%,另外每套房贈送a元裝修基金;降價10%,沒有其他贈送.請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)表達(dá)式;老王要購買第十六層的一套房,若他一次性付清所有房款,請幫他計算哪種優(yōu)惠方案更加合算.21.(6分)在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點(diǎn)A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.22.(8分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補(bǔ)充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A,B兩班的概率.23.(8分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長線于點(diǎn)F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.24.(10分)如圖,一次函數(shù)y=﹣x+6的圖象分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動時間為t秒.(1)點(diǎn)P在運(yùn)動過程中,若某一時刻,△OPA的面積為6,求此時P的坐標(biāo);(2)在整個運(yùn)動過程中,當(dāng)t為何值時,△AOP為等腰三角形?(只需寫出t的值,無需解答過程)25.(10分)為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)26.(12分)已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數(shù)量關(guān)系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.27.(12分)實(shí)踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點(diǎn)O.以O(shè)為圓心,OC為半徑作圓.綜合運(yùn)用:在你所作的圖中,AB與⊙O的位置關(guān)系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【點(diǎn)睛】本題主要考查了由實(shí)際問題抽象出分式方程,根據(jù)題意得出正確等量關(guān)系是解題的關(guān)鍵.2、D【解析】試題分析:A、選舉中,人們通常最關(guān)心的數(shù)據(jù)為出現(xiàn)次數(shù)最多的數(shù),所以A選項的說法正確;B、從1,2,3,4,5中隨機(jī)抽取一個數(shù),由于奇數(shù)由3個,而偶數(shù)有2個,則取得奇數(shù)的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,所以C選項的說法正確;D、數(shù)據(jù)3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數(shù)是3,所以D選項的說法錯誤.故選D.考點(diǎn):隨機(jī)事件發(fā)生的可能性(概率)的計算方法3、A【解析】試題分析:從上面看是一行3個正方形.故選A考點(diǎn):三視圖4、A【解析】
直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】拋物線y=x2的頂點(diǎn)坐標(biāo)為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點(diǎn)坐標(biāo)為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關(guān)鍵.5、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當(dāng)h<2時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論;當(dāng)2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當(dāng)h>5時,根據(jù)二次函數(shù)的性質(zhì)可得出關(guān)于h的一元二次方程,解之即可得出結(jié)論.綜上即可得出結(jié)論.詳解:如圖,當(dāng)h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當(dāng)2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當(dāng)h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點(diǎn)睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質(zhì),分h<2、2≤h≤5和h>5三種情況求出h值是解題的關(guān)鍵.6、B【解析】
分別把各點(diǎn)代入反比例函數(shù)的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點(diǎn)A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數(shù)y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)值的大小比較,熟練掌握反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.7、D【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數(shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.8、C【解析】
根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.9、C【解析】
根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點(diǎn)睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.10、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以
②當(dāng)OC經(jīng)過AB的中點(diǎn)E時,OC最大,則C、O兩點(diǎn)距離的最大值為4;
③如圖2,當(dāng)∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點(diǎn)共圓可知:A、C、B、O四點(diǎn)共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當(dāng)這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進(jìn)行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點(diǎn)關(guān)于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點(diǎn)為E,連接OE、CE,∵∴當(dāng)OC經(jīng)過點(diǎn)E時,OC最大,則C.O兩點(diǎn)距離的最大值為4;所以②正確;③如圖2,當(dāng)時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點(diǎn)D運(yùn)動路徑是:以O(shè)為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點(diǎn)睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.11、A【解析】
先整理為一般形式,用含m的式子表示出根的判別式△,再結(jié)合已知條件判斷△的取值范圍即可.【詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實(shí)數(shù)根,故選A.【點(diǎn)睛】本題考查了一元二次方程根的判別式,當(dāng)△>0,方程有兩個不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.12、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點(diǎn)睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
根據(jù)若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點(diǎn)睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關(guān)鍵.14、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點(diǎn):完全平方公式.15、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個,求出實(shí)數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個整數(shù)解,∴整數(shù)解為:故選C.點(diǎn)睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個數(shù),確定a的取值范圍.16、60π【解析】
圓錐的側(cè)面積=π×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.解:圓錐的側(cè)面積=π×6×10=60πcm1.17、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點(diǎn):一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類思想的應(yīng)用.【詳解】請在此輸入詳解!18、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因?yàn)閗≠0,所以k的值為﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明過程見解析【解析】
要證明BE=CD,只要證明AB=AC即可,由條件可以求得△AEC和△ADB全等,從而可以證得結(jié)論.【詳解】∵BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考點(diǎn):全等三角形的判定與性質(zhì).20、(1);(2)當(dāng)每套房贈送的裝修基金多于10560元時,選擇方案一合算;當(dāng)每套房贈送的裝修基金等于10560元時,兩種方案一樣;當(dāng)每套房贈送的裝修基金少于10560元時,選擇方案二合算.【解析】
解:(1)當(dāng)1≤x≤8時,每平方米的售價應(yīng)為:y=4000﹣(8﹣x)×30="30x+3760"(元/平方米)當(dāng)9≤x≤23時,每平方米的售價應(yīng)為:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴(2)第十六層樓房的每平方米的價格為:50×16+3600=4400(元/平方米),按照方案一所交房款為:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款為:W2=4400×120×(1﹣10%)=475200(元),當(dāng)W1>W(wǎng)2時,即485760﹣a>475200,解得:0<a<10560,當(dāng)W1<W2時,即485760﹣a<475200,解得:a>10560,∴當(dāng)0<a<10560時,方案二合算;當(dāng)a>10560時,方案一合算.【點(diǎn)睛】本題考查的是用一次函數(shù)解決實(shí)際問題,讀懂題目信息,找出數(shù)量關(guān)系表示出各樓層的單價以及是交房款的關(guān)系式是解題的關(guān)鍵.21、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】
(1)把A點(diǎn)坐標(biāo)代入反比例解析式確定出a的值,確定出A坐標(biāo),代入一次函數(shù)解析式求出b的值;(2)分別求出直線l1與x軸交于點(diǎn)D,再求出直線l2與x軸交于點(diǎn)B,從而得出直線l2與直線l1交于點(diǎn)C坐標(biāo),分兩種情況進(jìn)行討論:①當(dāng)S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當(dāng)S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點(diǎn)A在圖象上∴∴a=3∴A(3,1)∵點(diǎn)A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設(shè)直線y=x-2與x軸的交點(diǎn)為D∴D(2,0)①當(dāng)點(diǎn)C在點(diǎn)A的上方如圖(1)∵直線y=-x+m與x軸交點(diǎn)為B∴B(m,0)(m>3)∵直線y=-x+m與直線y=x-2相交于點(diǎn)C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點(diǎn)C在點(diǎn)A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點(diǎn)睛】此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,三角形的面積,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.22、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統(tǒng)計圖中百分?jǐn)?shù),進(jìn)而求出B班參賽作品數(shù)量;(2)利用C班提供的參賽作品的獲獎率為50%,結(jié)合C班參賽數(shù)量得出獲獎數(shù)量;(3)分別求出各班的獲獎百分率,進(jìn)而求出答案;(4)利用樹狀統(tǒng)計圖得出所有符合題意的答案進(jìn)而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數(shù)量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點(diǎn):1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.23、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質(zhì)得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據(jù)EF⊥AB,即可得出結(jié)論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四邊形AFBE是平行四邊形,又∵EF⊥AB,∴四邊形AFBE是菱形.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);線段垂直平分線的性質(zhì);探究型.24、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】
(1)先求出△OPA的面積為6時BP的長,再求出點(diǎn)P的坐標(biāo);(2)分別討論AO=AP,AP=OP和AO=OP三種情況.【詳解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,∴A(0,6),B(8,0),∴OA=6,OB=8,∴AB=10,∴AB邊上的高為6×8÷10=,∵P點(diǎn)的運(yùn)動時間為t,∴BP=t,則AP=,當(dāng)△AOP面積為6時,則有AP×=6,即×=6,解得t=7.5或12.5,過P作PE⊥x軸,PF⊥y軸,垂足分別為E、F,則PE==4.5或7.5,BE==6或10,則點(diǎn)P坐標(biāo)為(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由題意可知BP=t,AP=,當(dāng)△AOP為等腰三角形時,有AP=AO、AP=OP和AO=OP三種情況.
①當(dāng)AP=AO時,則有=6,解得t=4或16;②當(dāng)AP=OP時,過P作PM⊥AO,垂足為M,如圖1,則M為AO中點(diǎn),故P為AB中點(diǎn),此時t=5;③當(dāng)AO=OP時,過O作ON⊥AB,垂足為N,過P作PH⊥OB,垂足為H,如圖2,則AN=AP=(10-t),
∵PH∥AO,∴△AOB∽△PHB,∴=,即=,∴PH=t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,又∠ANO=∠PHB,
∴△ANO∽△PHB,
∴=,即=,解得t=;綜上可知當(dāng)t的值為、4、5和16時,△AOP為等腰三角形.25、(1)開通隧道前,汽車從A地到B地大約要走136.4千米;(2)汽車從A地到B地比原來少走的路程為27.2千米【解析】
(1)過點(diǎn)C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進(jìn)而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進(jìn)而求出汽車從A地到B地比原來少走多少路程.【詳解】解:(1)過點(diǎn)C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:開通隧道前,汽車從A地到B地大約要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽車從A地到B地比原來少走的路程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年客服工作計劃樣本(三篇)
- 2024年小學(xué)圖書室管理制度范例(二篇)
- 2024年學(xué)校宿管部工作計劃樣本(四篇)
- 2024年小學(xué)防溺水工作計劃樣本(三篇)
- 2024年平面設(shè)計師個人工作計劃例文(三篇)
- 2024年宣傳部規(guī)章制度樣本(四篇)
- 2024年大隊輔導(dǎo)員工作職責(zé)樣本(二篇)
- 2024年工會規(guī)范化建設(shè)細(xì)則范本(三篇)
- 2024年幼兒園家長學(xué)校工作計劃范文(二篇)
- 【《奧克斯電器無形資產(chǎn)會計核算現(xiàn)狀分析》8600字】
- GB/T 15822.1-2024無損檢測磁粉檢測第1部分:總則
- 2024年反洗錢知識競賽參考題庫400題(含答案)
- SLT824-2024 水利工程建設(shè)項目文件收集與歸檔規(guī)范
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(100分)
- 人民調(diào)解員業(yè)務(wù)培訓(xùn)講稿
- 公司領(lǐng)導(dǎo)干部調(diào)查研究制度
- 海水淡化反滲透裝置檢修維護(hù)說明書
- 連續(xù)梁合攏方案
- 異辛酸鈉合成工藝及建設(shè)項目
- DB42∕T 1124-2015 城市園林綠化養(yǎng)護(hù)管理質(zhì)量標(biāo)準(zhǔn)
- 西電計組課程設(shè)計報告
評論
0/150
提交評論