廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch16 Quantitative Data Analysis Inferential Statistics_第1頁
廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch16 Quantitative Data Analysis Inferential Statistics_第2頁
廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch16 Quantitative Data Analysis Inferential Statistics_第3頁
廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch16 Quantitative Data Analysis Inferential Statistics_第4頁
廣告調(diào)查(第二版)英文 指導(dǎo)手冊 Davis-Instructors-Manual-ch16 Quantitative Data Analysis Inferential Statistics_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGE

AdvertisingResearch:Instructor’sManual

Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall

AdvertisingResearch:Instructor’sManual

Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall

PAGE

16.QuantitativeDataAnalysis:InferentialStatistics

ChapterGoals

Afterreadingthischapterstudentsshouldhaveabetterunderstandingof:

? whatstatisticalsignificanceisandwhyitisimportant.

? howtoevaluatedifferentlevelsofresponsefromasinglegroupofindividuals.

? howtoevaluatethemeaningfulnessofdifferencesinlevelsofresponseamongtwoormoregroupsofindividuals.

? howtodeterminethesimultaneousandindependentinfluenceoftwoormoreexperimentalfactors.

? howtodeterminetherelationshipbetweentwoormoremeasures.NotestotheInstructor

TheChapterLectureprovidesaguidetokeytopicsandcontent.TwofilesofPowerPointslidesareprovided:davis_adresearch_ch16(part1).pptanddavis_adresearch_ch16(part2).ppt.

Levelsofsignificanceforstatisticaltestsareobtainedthroughonlinecalculators.Linkstoseveralexamplesofthesecalculatorsareprovidedwithintheslides.

ChapterLecture

Part1

Slides

Slide16-

2

Researcherstypicallyuseinferentialstatisticstoanswertwoimportantquestions:

? HowmuchconfidencecanIhavethatthedifferencebetweentwoormoremeasuresisrealandmeaningful,andnotjust

theresultofrandomfluxuationinthedata?

? HowmuchconfidencecanIhavethattherelationshipIam

seeingbetweentwoormoremeasuresisrealandmeaning-ful?

Statisticalsignificancehelpsanswerbothquestions.

I.StatisticalSignificance

Slide16-

3

Slide16-

4

Slide16-

5

Slide16-

6

Slide16-

7

Expressedasanumberbetween0and1.Alpha(a)representsprobabilitythatdifferenceisduetochance.Alowernumberreflectsmoreconfidencethatthedifferenceisarealone.Oncecalculated,foreaseofinterpretation,(a)isturnedintoapercentage.

? Whena=.1,forexample,thelevelofchanceis10%,soresearchercanbe90%confidentthattheresultsarereal.

When(a)is5%orlessresearcherstypicallyclaimthatfindingsarestatisticallysignificantandasaresultthatobserveddifferencesarereal.

ConsidertheexampledescribedinSlide16-5.DatashowninSlide16-6.Interpretedasfollows:

ThoseexposedtotheMustangalwayshavemorepositivescores.AresearcherlookingjustatthesescoresmightconcludethatMustang’spresenceinthegameachievedsuccessinallfouroftheareasmeasured,andasaresult,gameplacementisa

viableoptionifFordwantstochangeabroadrangeofattitudestowardMustang.Butwouldthisconclusionbecorrect?

ThetableshowninSlide16-7addsthealphavaluetoeachmeasure.

LevelsofstatisticalsignificanceshowthattheresearchercanonlyhaveconfidencethatgameplacementhelpedtochangeperceptionsofMustangasapowercar.Onlythismeasurehadan(a)levelat.05orless.Thechangesintheotherareaswerepositivebutdidnotreachthelevelofstatisticalsignificance.

Thus,basedontheresults,amorecorrectconclusionmighthave

beenthat:

PlacementinthegameworkswelltofosterpowercarperceptionsofMustangandshowssomesuccessinchangingattitudestowardMustanginotherareas.IfFordwantstofocusonimprovingpowercarperceptionsthengameplacementisanexcellentoption.IfFordwantstousegameplaytoimprove

attitudesintheremainingthreeareasthenwaysshouldbeexploredtodeterminehowcurrentMustangperceptionscanbestrengthenedwithspecificfocusonthethreeareasthatshowednearstatisticalsignificance.

II.MakingJudgmentsAboutASingleMeasureFromOneSample

A.ComparingaSampleAveragetoAPopulationAverage

Oneoftwotestscanbeusedtocompareasamplemeantoapopulationmean.Thetestselectedisdeterminedbysamplesize.Themathunderlyingbothtestsisquitesimpleandrequiresonlyminimalmanualcomputation.

Slide16-

8

Slide16-

9

Slide16-

10

Slide16-

11

1.LargeSampleSize

Alargesamplesizeisgenerallyconsideredtobe30ormoreindividuals.ImagineMcDonald'stestseveryproposedcommercialbeforeitisproduced.

Overtime,severalhundredtestsareconducted.McDonald'scanusepopulationofpriorteststoevaluateperformanceofproposedcommercials.Onlycommercialsthataresignificantlybetterthanaverageofpriorcommercialsonthekeymeasureof“purchaseintent”areproduced.

McDonald'stestsnewcommercial.ThedataneededtocalculatewhetherornotcommercialissignificantlybetterthantheaverageofpastcommercialsisshowninSlide16-9.

Acomparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:

1.Subtractpopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Resultis.8(3.9-3.1=.8).

2.Dividepopulationstandarddeviationbysquarerootofsamplesize.Resultis.16.(Thesquarerootof100is10,sothecomputationis1.6/10=.16.)

3.DividenumberobtainedinStep1bythenumberobtainedin

Step2.Resultis5.00(calculatedas.8/.16).

ThevalueobtainedisaZ-score,whichcanbeinterpretedinoneofthreeways,allofwhichreachthesameconclusion.First,astatisticaltablecanbeused.Second,youcancompareZ-scoreobtainedtotheZ-scorerequiredfor(a)at1%and5%levelsofconfidence.Third,youcanuseanonlinecalculator.AllthreeshowthataZ-scoreof5resultsinaconfidencelevelofmuchlessthan.001,

indicatingthatthereisactuallylessthan1chancein1,000thatresultsareduetochance.ThenewMcDonald’scommercialshouldbeproduced.

2.SmallSampleSize

Slide16-

12

Slide16-

13

Slide16-

14

Slide16-

15

Slide16-

16

Whensamplesizeislessthan30,t-test,isusedtocomparetestmeantopopulationmean.T-testisverysimilartoZtestinapproach.However,whiletheZtestusesthepopulationstandarddeviationt-testutilizesthesamplestandarddeviation.SampledatashowninSlide16-12.

Thisisthesamesituationasbefore,onlythesamplesizeislessthan30.Comparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:

1.Subtractthepopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Inthisexampletheresultis-.4(3.2-

3.6=-.4).

2. Dividethetestsamplestandarddeviationbythesquarerootofthesamplesize.Inthisexampletheresultis.3(Thesquarerootof25is5,sothecomputationis1.5/5=.3.)

3.DividethenumberisobtainedinStep1bythenumberobtainedinStep2.Inthisexampletheresultis-1.33(calculatedas-.4/

.3).

Interpretationoft-valueusesdegreesoffreedomwhichisthenumberinyoursampleminusone(inthisexample24).Onceknown,thestatisticaltableoronlinecalculatorcanbeused.At-scoreof-1.33and24degreesoffreedomgivessignificancevalueof.196.Thislevelofsignificancefailstoreachthetraditionalcut-offvalues(.01or.05)andindicatesthatresearchercannotbeconfidentthatdifferencebetweentestcommercialandtheaverageofallpriorcommercialsis“real”andnotduetochance.McDonald'scannotconfidentlyconcludethattestcommercialisdifferent(eitherbetterorworse)thanaverageofpriorcommercials.

B.ComparingaSampleProportiontoaPopulationProportion

ThinkaboutMcDonald'stryingtoassessimpactofproposedcommercialsonconsumers’intentiontoeatatMcDonald's.Afterseeingthetestcommercial,respondentsasked:"Thenexttimeyougotoafastfoodrestaurantwherewillyougo?"Thepercentageofrespondentsanswering"McDonald's"istallied.

McDonald'scancomparetheproportionofrespondentssaying"McDonald's"afterseeingatestcommercialtotheaveragepercentagesaying"McDonald's"

withintheirpopulationofpriortests.DatashowninSlide16-16.

Slide16-

17

Slide16-

18

Slide16-

19

Slide16-

20

Slide16-

21

Slide16-

22

Comparisonoftestcommercialtopopulationofcommercialstakesfivesteps:

1.Turnthepopulationandsampleproportionsintodecimals.Then,subtractthepopulationproportionfromthesampleproportion

(inthiscasethetestcommercial).Inthisexample,theresultis

.18(.75-.57=.18).

2.Multiplythetwopopulationproportions.Inthisexampletheresultis.25(.57*.43=.25).

3.DividethenumberfromStep2bythesamplesize.Inthisexample,theresultis.005(.25/50).

4.TakethesquarerootofthenumberobtainedinStep3.Inthisexample,thesquarerootisof.005is.071.

5.DividethenumberfromStep1bythenumberisStep4.Inthisexampletheresultis2.53(.18/.071=2.53).

ThevalueobtainedisaZ-score,whichisinterpretedsimilarlytotheZ-scorediscussedearlier.Z-scoreof2.53translatestoan(a)of.011.ThisindicatesthatMcDonald’scanbenearly99%confidentthatthedifferencesarerealandnotduetochance.Giventhataislessthanthe.05levelofsignificance,McDonald’sconcludesthattheproportionofrespondentswhosaytheyintendtotryMcDonald'safterseeingtestcommercialishigherthanaverageproportionofindividualssaying"McDonald's"inpopulationoftestcommercials.Thiscommercialissignificantlybetterthanpriorcommercials.

III.ExaminingtheInternalCharacteristicsofaSingleSample

Themostcommonapproachtoexaminingapatternofresponsestoasinglemeasureischi-square.Inthiscase,itexaminesfrequencydistributionwithinsinglesampleanddeterminesifpatternissignificantlydifferentthanchance.

Example:Anadvertiserhasfourcommercialsandwishestodeterminewhichcommercialbestcommunicatesatargetmessage.Allfourcommercialsareshowntoasampleofconsumersand,afterallareseen,eachrespondentselectsthecommercialheorshethinkswasbestthecommunicator.

PreferencedataforthisexampleisshowninSlide16-21.

Tomaketheunderlyingdatatrendmorevisible,thetableinSlide16-22expandsthepriortable:

? Countofindividualsselectingeachcommercialisturnedintopercentagedistribution(column2).

? Theexpectednumberofindividualsselectingeachcommercialhasbeenadded(column3).Thispercentageandactualnumberassumesthatifchanceselectionwasoccurringanequalpercentageofindividualswouldselecteachcommercial.Thedatainthesecondandfifthcolumnsarewhatisusedintheactualchi-squareanalysis.

Slide16-

23

Slide16-

24

Slide16-

25

Slide16-

26

Resultsofthechi-squarecalculationanditslevelofsignificancehavealsobeenaddedtothebottomoftable,whichwereobtainedfromtypingdataintoonlinecalculator.(Notethatactualvaluesare:152,114,91,79.Expectedvalueforallcellsis109.)

Levelofsignificanceindicatesthatresultsarenotrandomorduetochance.Theprobabilityofthispatternnotbeing“real”islessthan1in1,000.Thus,McDonald’scanconcludethatconsumers’reactionstothecommercialsareindeeddifferent.

IV.MakingJudgmentsAboutASingleMeasureFromTwoorMore

IndependentSamples

Agreatdealofadvertisingresearchentailscomparingmeasuresfromtwodifferentsamples,forexample,conductinganexperimentwheretheresearcherwantstocompareresultsofcontroltoatestgrouporwherearesearcherwantstofindoutifdifferencesbetweentwosubgroups(suchasmenversuswomen)onsamesurveyarestatisticallydifferent.InthesecasesanF-testisused.

A.ComparingTwoMeans

1.TwoConditions

Example:AnadvertiserhasdevelopedtwoadsthataretobeplacedintorotationinGoogleAdwords.Whilebothadswillbeshowninresponsetothesamesearchterms,adsdifferinbenefit:thefirstadstressescustomerservicewhilethesecondadstresseslowprices.Adwordsletsyoumonitorthepurchaseamountresultingfromtheclick-throughforeachoftheads.Dataiscollected

foramonth,andisshowninSlide16-25.

F-testistheappropriatestatisticaltesttouseincircumstancessuchasthis.TableshowninSlide16-26addsresultsofF-test.

F-value(whichtakesintoaccountsamplesize,thedifferencesbetweentheaveragesandstandarddeviation)isusedtodeterminelevelofsignificance,

whichisreportedinthelastcolumn.Dataindicatesthatthedifferencebetweenthetwoadsaresignificantinfavorofthecustomerservicead.Thechancesofthesedifferencesbeingseenduetochanceislessthan1in1,000.

2.OneSurvey,TwoSubgroups

F-testcanbeusedtodetermineiftheresponsesofdifferentsubgroupsarestatisticallysignificant.

Slide16-

27

Slide16-

28

Slide16-

29

Slide16-

30

Slide16-

31

Slide16-

32

Slide16-

33

Imaginethatanadvertiserasksthefive-pointratingquestion:“HowlikelyorunlikelyareyoupurchaseaniPhoneinthenextmonth?”Highernumbersindicateagreaterlikelihoodtopurchase.WhentheratingsofmenversuswomensurveyedarecomparedthedataappearsasthatshownonSlide16-27.

ThetableshownonSlide16-28addsresultsofF-test:

Asinthepriorexample,theF-valuedeterminesthelevelofsignificance.Itindicatesthatthereisasignificantdifferenceinpurchaseintent.Chanceofthesedifferencesbeingseenduetochanceislessthan1in1,000.

V.ComparingThreeorMoreMeans

A.ThreeorMoreConditions

Anadvertiserwantstotestthreeads:anexistingcustomerserviceadandtwoadditionalads.Firstnewadstressesquickdeliverywhilethesecondisa

revisedlowpricead.DataiscollectedforamonthandisshowninSlide16-30.

TableinSlide16-31addsresultsoftheF-test.

Whentestingthreeormoremeans,F-testindicateswhetherallofthemeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Inreadingthelevelofsignificancecolumn,itcanbeseenthatthereisasignificantdifferenceinaveragepurchaseamountgeneratedbyeachad.But,itisnotknownwhichoneisthe“best”untilabsolutelevelsareexaminedandtestsofpairsofmeansareconducted.

DataforthisanalysisisshowninSlide16-32.Whenthisisdone,therevisedlowpriceadisthemostsuccessfulasitissignificantlyhigherthantheothertwoads,whichinturnarenotdifferentfromeachother.

B.OneSurvey,ThreeorMoreSubgroups

Priorprocedurecanbeusedtocomparethreeormoresubgroupsrespondingtothesamesurvey.Imagine,forexample,thatnowyouwantedtoexaminethe

purchaseintentoftheiPhoneamongdifferentagegroups.Therelevantdatafromthefive-pointsurveyquestionisshowninSlide16-33.

Slide16-

34

Slide16-

35

Slide16-

36

Slide16-

37

TableinSlide16-34addsresultsoftheF-test.

Asinthepriorexample,F-testindicateswhetherallmeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Here,thereissignificantdifferenceintheaveragepurchaseintent.But,itisnotknownwhicharesignificantlydifferentfromeachother.

Thisisdeterminedbycomparingeachpairofmeans,asshowninSlide16-35.Thispatternindicatesthatpurchaseintentof18-24yearoldsissignificantlyhigherthantheothertwoagegroupsandthatthepurchaseintentofthose25-49isgreaterthanthatofthoseaged50+.

VI.FactorialDesigns:MakingJudgmentsAbouttheSimultaneous

InfluenceofTwoorMoreVariables

Therearetimeswhenaresearcherwantstofindtheinfluenceoftwoormorevariablesatthesametime.Theadvantageofsimultaneouslymanipulatingtwoormorevariablesisthataresearcherisabletoseeifthereisaninteractionbetweenthevariables.Factorialdesignallowsyoutomanipulatetwoormorevariablesatthesametime.

Factorialdesignisdescribedintermsofitsmainfactorsandthelevelswithineachfactor.

ImagineanadvertiserwantstodevelopfourViraladsforanewcampaign.Theads,whilealldesignedtocommunicatethesamemessage,varyalongtwofactors:useofhumorandgenderofthespokesperson.AsshowninSlide16-36“Humor”and“Gender”arethefactors.Eachfactorhastwolevels:twolevels

ofhumorare“Absent”and“Present”whiletwolevelsof“Gender”are“Male”

and“Female.”

Thefollowingdiscussionlooksatthemostcommonoutcomesoffactorialdesigns.

A.NeitherFactorisSignificant,NoInteractionBetweenfactors

Thefirststepinanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors.TheoutcomeshowninSlide16-37.

Thedataindicatesthat:

? Theoverallaverageforthetwoadswithamalespokesperson

was3.7whiletheoverallaverageforthetwoadswithafemalespokespersonwas3.9.

? Theoverallaverageforthetwoadswithhumorwas3.7whiletheoverallaverageforthetwoadswithouthumorwas3.9.

? Theaveragefor“Logo”was3.6whiletheaveragefor“Text”

was4.0.

Slide16-

38

Slide16-

39

Slide16-

40

Slide16-

41

F-valueisthencomputedforeachfactortheinteractionbetweenthetwofactors.TheF-valueisthentranslatedintoan(a)asshowninSlide16-38.

Datainterpretedasfollows:

? Genderasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.

? Humorasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.

? Nosignificantinteractionbetweenthetwomaineffectsasthe(a)

fortheinteractionisgreaterthan.05.

FindingsareillustratedinthegraphshowninSlide16-39.Notehowlinesforbothmaineffectsareparalleltoeachother(indicatingnointeraction)andveryclosetogether(indicatingthatneithermaineffectissignificant).

B.OneFactorisSignificant,NoInteractionBetweenFactors

Asinthepriorexample,thefirststepcalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-40.

F-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-41.

Datainterpretedasfollows:

?Genderasamaineffecthadaprofoundinfluenceonratingsofcommercialrelevance.

?Humorasamaineffecthadlittleinfluenceonratingsofcommercialrelevance.

?Therewasnosignificantinteractionbetweenthetwofactorsasthe(a)fortheinteractionisgreaterthan.05.

Slide16-

42

Part2

Slides

Slide16-

2

Slide16-

3

Slide16-

4

Slide16-

5

FindingsareillustratedinSlide16-42.Notehowthelinesforbothfactorsareparalleltoeachother(indicatingnointeraction)withthespacebetweenthemquitelarge(indicatingasignificantmaineffect).Thisindicatesthatthemalespokespersonwasalwaysrespondedtoinamorepositivewayversusthefemalespokesperson.Regardlessofwhetherornothumorwaspresent,themalespokespersonreceivedhigherratingsversusfemalespokesperson.

C.OneFactorisSignificant,thereisanInteractionBetweenFactors

Thefirststepintheanalysiscalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-2.

TheF-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenfactorsasshowninSlide16-3.

Datainterpretedasfollows:

? Therewasasignificantinteractionbetweenthetwofactorsas(a)fortheinteractionislessthan.05.Indicatesthatweneedtobecautiousininterpretingthedatarelevanttothemaineffects.

? Genderasamaineffecthadasignificant,independentinfluenceonratingsofcommercialrelevance.However,thesignificantinteractiontermindicatesthatitisnecessarytoexaminethescoresofindividualadspriortodrawingafinalconclusion.Whendone,canbeseenthatsignificanceofthismaineffectisalmostentirelyduetothedifferencebetween“Guitars”and“Text”ads.

? Humorasamaineffecthadnoindependentinfluenceonratingsofcommercialrelevance.

FindingsareillustratedinthegraphshowninSlide16-4.Notehowlinesnowrunatanangletoeachother,ratherthenrunningparallel.Thispatternisavisualindicationofaninteraction.Thelines’closenesswhenhumorispresentanddistancewhenhumorisabsentindicatesthathumoronlyexertsaninfluenceonrelevanceratingswhenitisabsentandonlyresultsinhigherratingswhenamalespokespersonisused.

D.TwoFactorsareSignificant,NoInteractionBetweenFactors

Thefirststepcalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-5.

Slide16-

6

Slide16-

7

Slide16-

8

Slide16-

9

F-valuesandlevelsofsignificancearecomputedforeachfactorandforinteractionbetweenthetwofactorsasshowninSlide16-6.

Datainterpretedasfollows:

? Genderexertedanindependentinfluenceonratingsofcommercialrelevance.Relevancewasratedhigherwhenthespokespersonwasfemaleversusmale.

? Humorexertedindependentinfluenceonratingsofcommercialrelevance.Therewasasignificantdifferencewhenhumorwaspresentversusabsent.Relevancewasratedhigherwhenhumorwaspresent.

? Therewasnosignificantinteractionbetweenthetwofactors.FindingsareillustratedinthegraphshowninSlide16-7.Notehowlinesfor

bothfactorsareparalleltoeachother(indicatingnointeraction)withthespace

betweenthemquitelarge.

E.NeitherFactorisSignificant,thereisanInteractionBetweenFactors

Thefirststepintheanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-8.

F-valuesandlevelsofsignificancearecomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-9.

Dataindicates:

? Therewasasignificantinteractionbetweenthetwofactorsasthe

(a)fortheinteractionisgreaterthan.05.Indicatesthatweneed

tobecautiousininterpretingthedatarelevanttothemaineffects.

? Genderasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenthegenderofthespokespersonwasvaried.Examinationoftheindividualad’smeansindicatesthattherewasalargedifferencebetweenadswithafemalespokespersonandtheadswithamalespokesperson.

? Humorasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenhumorwaspresentorabsent.Examinationofindividualad’s

meansshowsalargedifferencebetweenadswithhumorandtheadswithouthumor.

Slide16-

10

Slide16-

11

Slide16-

12

Slide16-

13

Slide16-

14

FindingsareillustratedinthegraphshowninSlide16-10.Notehowlinesrunatanangletoeachother,ratherthenrunningparallel.Graphindicatesthatfemalespokespeoplearebes

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論