版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGE
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
AdvertisingResearch:Instructor’sManual
Copyright?2012PearsonEducation,Inc.publishingasPrenticeHall
PAGE
16.QuantitativeDataAnalysis:InferentialStatistics
ChapterGoals
Afterreadingthischapterstudentsshouldhaveabetterunderstandingof:
? whatstatisticalsignificanceisandwhyitisimportant.
? howtoevaluatedifferentlevelsofresponsefromasinglegroupofindividuals.
? howtoevaluatethemeaningfulnessofdifferencesinlevelsofresponseamongtwoormoregroupsofindividuals.
? howtodeterminethesimultaneousandindependentinfluenceoftwoormoreexperimentalfactors.
? howtodeterminetherelationshipbetweentwoormoremeasures.NotestotheInstructor
TheChapterLectureprovidesaguidetokeytopicsandcontent.TwofilesofPowerPointslidesareprovided:davis_adresearch_ch16(part1).pptanddavis_adresearch_ch16(part2).ppt.
Levelsofsignificanceforstatisticaltestsareobtainedthroughonlinecalculators.Linkstoseveralexamplesofthesecalculatorsareprovidedwithintheslides.
ChapterLecture
Part1
Slides
Slide16-
2
Researcherstypicallyuseinferentialstatisticstoanswertwoimportantquestions:
? HowmuchconfidencecanIhavethatthedifferencebetweentwoormoremeasuresisrealandmeaningful,andnotjust
theresultofrandomfluxuationinthedata?
? HowmuchconfidencecanIhavethattherelationshipIam
seeingbetweentwoormoremeasuresisrealandmeaning-ful?
Statisticalsignificancehelpsanswerbothquestions.
I.StatisticalSignificance
Slide16-
3
Slide16-
4
Slide16-
5
Slide16-
6
Slide16-
7
Expressedasanumberbetween0and1.Alpha(a)representsprobabilitythatdifferenceisduetochance.Alowernumberreflectsmoreconfidencethatthedifferenceisarealone.Oncecalculated,foreaseofinterpretation,(a)isturnedintoapercentage.
? Whena=.1,forexample,thelevelofchanceis10%,soresearchercanbe90%confidentthattheresultsarereal.
When(a)is5%orlessresearcherstypicallyclaimthatfindingsarestatisticallysignificantandasaresultthatobserveddifferencesarereal.
ConsidertheexampledescribedinSlide16-5.DatashowninSlide16-6.Interpretedasfollows:
ThoseexposedtotheMustangalwayshavemorepositivescores.AresearcherlookingjustatthesescoresmightconcludethatMustang’spresenceinthegameachievedsuccessinallfouroftheareasmeasured,andasaresult,gameplacementisa
viableoptionifFordwantstochangeabroadrangeofattitudestowardMustang.Butwouldthisconclusionbecorrect?
ThetableshowninSlide16-7addsthealphavaluetoeachmeasure.
LevelsofstatisticalsignificanceshowthattheresearchercanonlyhaveconfidencethatgameplacementhelpedtochangeperceptionsofMustangasapowercar.Onlythismeasurehadan(a)levelat.05orless.Thechangesintheotherareaswerepositivebutdidnotreachthelevelofstatisticalsignificance.
Thus,basedontheresults,amorecorrectconclusionmighthave
beenthat:
PlacementinthegameworkswelltofosterpowercarperceptionsofMustangandshowssomesuccessinchangingattitudestowardMustanginotherareas.IfFordwantstofocusonimprovingpowercarperceptionsthengameplacementisanexcellentoption.IfFordwantstousegameplaytoimprove
attitudesintheremainingthreeareasthenwaysshouldbeexploredtodeterminehowcurrentMustangperceptionscanbestrengthenedwithspecificfocusonthethreeareasthatshowednearstatisticalsignificance.
II.MakingJudgmentsAboutASingleMeasureFromOneSample
A.ComparingaSampleAveragetoAPopulationAverage
Oneoftwotestscanbeusedtocompareasamplemeantoapopulationmean.Thetestselectedisdeterminedbysamplesize.Themathunderlyingbothtestsisquitesimpleandrequiresonlyminimalmanualcomputation.
Slide16-
8
Slide16-
9
Slide16-
10
Slide16-
11
1.LargeSampleSize
Alargesamplesizeisgenerallyconsideredtobe30ormoreindividuals.ImagineMcDonald'stestseveryproposedcommercialbeforeitisproduced.
Overtime,severalhundredtestsareconducted.McDonald'scanusepopulationofpriorteststoevaluateperformanceofproposedcommercials.Onlycommercialsthataresignificantlybetterthanaverageofpriorcommercialsonthekeymeasureof“purchaseintent”areproduced.
McDonald'stestsnewcommercial.ThedataneededtocalculatewhetherornotcommercialissignificantlybetterthantheaverageofpastcommercialsisshowninSlide16-9.
Acomparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractpopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Resultis.8(3.9-3.1=.8).
2.Dividepopulationstandarddeviationbysquarerootofsamplesize.Resultis.16.(Thesquarerootof100is10,sothecomputationis1.6/10=.16.)
3.DividenumberobtainedinStep1bythenumberobtainedin
Step2.Resultis5.00(calculatedas.8/.16).
ThevalueobtainedisaZ-score,whichcanbeinterpretedinoneofthreeways,allofwhichreachthesameconclusion.First,astatisticaltablecanbeused.Second,youcancompareZ-scoreobtainedtotheZ-scorerequiredfor(a)at1%and5%levelsofconfidence.Third,youcanuseanonlinecalculator.AllthreeshowthataZ-scoreof5resultsinaconfidencelevelofmuchlessthan.001,
indicatingthatthereisactuallylessthan1chancein1,000thatresultsareduetochance.ThenewMcDonald’scommercialshouldbeproduced.
2.SmallSampleSize
Slide16-
12
Slide16-
13
Slide16-
14
Slide16-
15
Slide16-
16
Whensamplesizeislessthan30,t-test,isusedtocomparetestmeantopopulationmean.T-testisverysimilartoZtestinapproach.However,whiletheZtestusesthepopulationstandarddeviationt-testutilizesthesamplestandarddeviation.SampledatashowninSlide16-12.
Thisisthesamesituationasbefore,onlythesamplesizeislessthan30.Comparisonoftestcommercialtopopulationofcommercialsiscarriedoutinthreesteps:
1.Subtractthepopulationaveragefromthesampleaverage(inthiscasethetestcommercial).Inthisexampletheresultis-.4(3.2-
3.6=-.4).
2. Dividethetestsamplestandarddeviationbythesquarerootofthesamplesize.Inthisexampletheresultis.3(Thesquarerootof25is5,sothecomputationis1.5/5=.3.)
3.DividethenumberisobtainedinStep1bythenumberobtainedinStep2.Inthisexampletheresultis-1.33(calculatedas-.4/
.3).
Interpretationoft-valueusesdegreesoffreedomwhichisthenumberinyoursampleminusone(inthisexample24).Onceknown,thestatisticaltableoronlinecalculatorcanbeused.At-scoreof-1.33and24degreesoffreedomgivessignificancevalueof.196.Thislevelofsignificancefailstoreachthetraditionalcut-offvalues(.01or.05)andindicatesthatresearchercannotbeconfidentthatdifferencebetweentestcommercialandtheaverageofallpriorcommercialsis“real”andnotduetochance.McDonald'scannotconfidentlyconcludethattestcommercialisdifferent(eitherbetterorworse)thanaverageofpriorcommercials.
B.ComparingaSampleProportiontoaPopulationProportion
ThinkaboutMcDonald'stryingtoassessimpactofproposedcommercialsonconsumers’intentiontoeatatMcDonald's.Afterseeingthetestcommercial,respondentsasked:"Thenexttimeyougotoafastfoodrestaurantwherewillyougo?"Thepercentageofrespondentsanswering"McDonald's"istallied.
McDonald'scancomparetheproportionofrespondentssaying"McDonald's"afterseeingatestcommercialtotheaveragepercentagesaying"McDonald's"
withintheirpopulationofpriortests.DatashowninSlide16-16.
Slide16-
17
Slide16-
18
Slide16-
19
Slide16-
20
Slide16-
21
Slide16-
22
Comparisonoftestcommercialtopopulationofcommercialstakesfivesteps:
1.Turnthepopulationandsampleproportionsintodecimals.Then,subtractthepopulationproportionfromthesampleproportion
(inthiscasethetestcommercial).Inthisexample,theresultis
.18(.75-.57=.18).
2.Multiplythetwopopulationproportions.Inthisexampletheresultis.25(.57*.43=.25).
3.DividethenumberfromStep2bythesamplesize.Inthisexample,theresultis.005(.25/50).
4.TakethesquarerootofthenumberobtainedinStep3.Inthisexample,thesquarerootisof.005is.071.
5.DividethenumberfromStep1bythenumberisStep4.Inthisexampletheresultis2.53(.18/.071=2.53).
ThevalueobtainedisaZ-score,whichisinterpretedsimilarlytotheZ-scorediscussedearlier.Z-scoreof2.53translatestoan(a)of.011.ThisindicatesthatMcDonald’scanbenearly99%confidentthatthedifferencesarerealandnotduetochance.Giventhataislessthanthe.05levelofsignificance,McDonald’sconcludesthattheproportionofrespondentswhosaytheyintendtotryMcDonald'safterseeingtestcommercialishigherthanaverageproportionofindividualssaying"McDonald's"inpopulationoftestcommercials.Thiscommercialissignificantlybetterthanpriorcommercials.
III.ExaminingtheInternalCharacteristicsofaSingleSample
Themostcommonapproachtoexaminingapatternofresponsestoasinglemeasureischi-square.Inthiscase,itexaminesfrequencydistributionwithinsinglesampleanddeterminesifpatternissignificantlydifferentthanchance.
Example:Anadvertiserhasfourcommercialsandwishestodeterminewhichcommercialbestcommunicatesatargetmessage.Allfourcommercialsareshowntoasampleofconsumersand,afterallareseen,eachrespondentselectsthecommercialheorshethinkswasbestthecommunicator.
PreferencedataforthisexampleisshowninSlide16-21.
Tomaketheunderlyingdatatrendmorevisible,thetableinSlide16-22expandsthepriortable:
? Countofindividualsselectingeachcommercialisturnedintopercentagedistribution(column2).
? Theexpectednumberofindividualsselectingeachcommercialhasbeenadded(column3).Thispercentageandactualnumberassumesthatifchanceselectionwasoccurringanequalpercentageofindividualswouldselecteachcommercial.Thedatainthesecondandfifthcolumnsarewhatisusedintheactualchi-squareanalysis.
Slide16-
23
Slide16-
24
Slide16-
25
Slide16-
26
Resultsofthechi-squarecalculationanditslevelofsignificancehavealsobeenaddedtothebottomoftable,whichwereobtainedfromtypingdataintoonlinecalculator.(Notethatactualvaluesare:152,114,91,79.Expectedvalueforallcellsis109.)
Levelofsignificanceindicatesthatresultsarenotrandomorduetochance.Theprobabilityofthispatternnotbeing“real”islessthan1in1,000.Thus,McDonald’scanconcludethatconsumers’reactionstothecommercialsareindeeddifferent.
IV.MakingJudgmentsAboutASingleMeasureFromTwoorMore
IndependentSamples
Agreatdealofadvertisingresearchentailscomparingmeasuresfromtwodifferentsamples,forexample,conductinganexperimentwheretheresearcherwantstocompareresultsofcontroltoatestgrouporwherearesearcherwantstofindoutifdifferencesbetweentwosubgroups(suchasmenversuswomen)onsamesurveyarestatisticallydifferent.InthesecasesanF-testisused.
A.ComparingTwoMeans
1.TwoConditions
Example:AnadvertiserhasdevelopedtwoadsthataretobeplacedintorotationinGoogleAdwords.Whilebothadswillbeshowninresponsetothesamesearchterms,adsdifferinbenefit:thefirstadstressescustomerservicewhilethesecondadstresseslowprices.Adwordsletsyoumonitorthepurchaseamountresultingfromtheclick-throughforeachoftheads.Dataiscollected
foramonth,andisshowninSlide16-25.
F-testistheappropriatestatisticaltesttouseincircumstancessuchasthis.TableshowninSlide16-26addsresultsofF-test.
F-value(whichtakesintoaccountsamplesize,thedifferencesbetweentheaveragesandstandarddeviation)isusedtodeterminelevelofsignificance,
whichisreportedinthelastcolumn.Dataindicatesthatthedifferencebetweenthetwoadsaresignificantinfavorofthecustomerservicead.Thechancesofthesedifferencesbeingseenduetochanceislessthan1in1,000.
2.OneSurvey,TwoSubgroups
F-testcanbeusedtodetermineiftheresponsesofdifferentsubgroupsarestatisticallysignificant.
Slide16-
27
Slide16-
28
Slide16-
29
Slide16-
30
Slide16-
31
Slide16-
32
Slide16-
33
Imaginethatanadvertiserasksthefive-pointratingquestion:“HowlikelyorunlikelyareyoupurchaseaniPhoneinthenextmonth?”Highernumbersindicateagreaterlikelihoodtopurchase.WhentheratingsofmenversuswomensurveyedarecomparedthedataappearsasthatshownonSlide16-27.
ThetableshownonSlide16-28addsresultsofF-test:
Asinthepriorexample,theF-valuedeterminesthelevelofsignificance.Itindicatesthatthereisasignificantdifferenceinpurchaseintent.Chanceofthesedifferencesbeingseenduetochanceislessthan1in1,000.
V.ComparingThreeorMoreMeans
A.ThreeorMoreConditions
Anadvertiserwantstotestthreeads:anexistingcustomerserviceadandtwoadditionalads.Firstnewadstressesquickdeliverywhilethesecondisa
revisedlowpricead.DataiscollectedforamonthandisshowninSlide16-30.
TableinSlide16-31addsresultsoftheF-test.
Whentestingthreeormoremeans,F-testindicateswhetherallofthemeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Inreadingthelevelofsignificancecolumn,itcanbeseenthatthereisasignificantdifferenceinaveragepurchaseamountgeneratedbyeachad.But,itisnotknownwhichoneisthe“best”untilabsolutelevelsareexaminedandtestsofpairsofmeansareconducted.
DataforthisanalysisisshowninSlide16-32.Whenthisisdone,therevisedlowpriceadisthemostsuccessfulasitissignificantlyhigherthantheothertwoads,whichinturnarenotdifferentfromeachother.
B.OneSurvey,ThreeorMoreSubgroups
Priorprocedurecanbeusedtocomparethreeormoresubgroupsrespondingtothesamesurvey.Imagine,forexample,thatnowyouwantedtoexaminethe
purchaseintentoftheiPhoneamongdifferentagegroups.Therelevantdatafromthefive-pointsurveyquestionisshowninSlide16-33.
Slide16-
34
Slide16-
35
Slide16-
36
Slide16-
37
TableinSlide16-34addsresultsoftheF-test.
Asinthepriorexample,F-testindicateswhetherallmeansshouldbeconsideredthesameorifoneofmoremeansaresignificantlydifferentthantheothers.Here,thereissignificantdifferenceintheaveragepurchaseintent.But,itisnotknownwhicharesignificantlydifferentfromeachother.
Thisisdeterminedbycomparingeachpairofmeans,asshowninSlide16-35.Thispatternindicatesthatpurchaseintentof18-24yearoldsissignificantlyhigherthantheothertwoagegroupsandthatthepurchaseintentofthose25-49isgreaterthanthatofthoseaged50+.
VI.FactorialDesigns:MakingJudgmentsAbouttheSimultaneous
InfluenceofTwoorMoreVariables
Therearetimeswhenaresearcherwantstofindtheinfluenceoftwoormorevariablesatthesametime.Theadvantageofsimultaneouslymanipulatingtwoormorevariablesisthataresearcherisabletoseeifthereisaninteractionbetweenthevariables.Factorialdesignallowsyoutomanipulatetwoormorevariablesatthesametime.
Factorialdesignisdescribedintermsofitsmainfactorsandthelevelswithineachfactor.
ImagineanadvertiserwantstodevelopfourViraladsforanewcampaign.Theads,whilealldesignedtocommunicatethesamemessage,varyalongtwofactors:useofhumorandgenderofthespokesperson.AsshowninSlide16-36“Humor”and“Gender”arethefactors.Eachfactorhastwolevels:twolevels
ofhumorare“Absent”and“Present”whiletwolevelsof“Gender”are“Male”
and“Female.”
Thefollowingdiscussionlooksatthemostcommonoutcomesoffactorialdesigns.
A.NeitherFactorisSignificant,NoInteractionBetweenfactors
Thefirststepinanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors.TheoutcomeshowninSlide16-37.
Thedataindicatesthat:
? Theoverallaverageforthetwoadswithamalespokesperson
was3.7whiletheoverallaverageforthetwoadswithafemalespokespersonwas3.9.
? Theoverallaverageforthetwoadswithhumorwas3.7whiletheoverallaverageforthetwoadswithouthumorwas3.9.
? Theaveragefor“Logo”was3.6whiletheaveragefor“Text”
was4.0.
Slide16-
38
Slide16-
39
Slide16-
40
Slide16-
41
F-valueisthencomputedforeachfactortheinteractionbetweenthetwofactors.TheF-valueisthentranslatedintoan(a)asshowninSlide16-38.
Datainterpretedasfollows:
? Genderasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
? Humorasmaineffecthadlittleinfluenceonratingsofcommercialrelevance.
? Nosignificantinteractionbetweenthetwomaineffectsasthe(a)
fortheinteractionisgreaterthan.05.
FindingsareillustratedinthegraphshowninSlide16-39.Notehowlinesforbothmaineffectsareparalleltoeachother(indicatingnointeraction)andveryclosetogether(indicatingthatneithermaineffectissignificant).
B.OneFactorisSignificant,NoInteractionBetweenFactors
Asinthepriorexample,thefirststepcalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-40.
F-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-41.
Datainterpretedasfollows:
?Genderasamaineffecthadaprofoundinfluenceonratingsofcommercialrelevance.
?Humorasamaineffecthadlittleinfluenceonratingsofcommercialrelevance.
?Therewasnosignificantinteractionbetweenthetwofactorsasthe(a)fortheinteractionisgreaterthan.05.
Slide16-
42
Part2
Slides
Slide16-
2
Slide16-
3
Slide16-
4
Slide16-
5
FindingsareillustratedinSlide16-42.Notehowthelinesforbothfactorsareparalleltoeachother(indicatingnointeraction)withthespacebetweenthemquitelarge(indicatingasignificantmaineffect).Thisindicatesthatthemalespokespersonwasalwaysrespondedtoinamorepositivewayversusthefemalespokesperson.Regardlessofwhetherornothumorwaspresent,themalespokespersonreceivedhigherratingsversusfemalespokesperson.
C.OneFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-2.
TheF-valuesandlevelsofsignificancearethencomputedforeachfactorandfortheinteractionbetweenfactorsasshowninSlide16-3.
Datainterpretedasfollows:
? Therewasasignificantinteractionbetweenthetwofactorsas(a)fortheinteractionislessthan.05.Indicatesthatweneedtobecautiousininterpretingthedatarelevanttothemaineffects.
? Genderasamaineffecthadasignificant,independentinfluenceonratingsofcommercialrelevance.However,thesignificantinteractiontermindicatesthatitisnecessarytoexaminethescoresofindividualadspriortodrawingafinalconclusion.Whendone,canbeseenthatsignificanceofthismaineffectisalmostentirelyduetothedifferencebetween“Guitars”and“Text”ads.
? Humorasamaineffecthadnoindependentinfluenceonratingsofcommercialrelevance.
FindingsareillustratedinthegraphshowninSlide16-4.Notehowlinesnowrunatanangletoeachother,ratherthenrunningparallel.Thispatternisavisualindicationofaninteraction.Thelines’closenesswhenhumorispresentanddistancewhenhumorisabsentindicatesthathumoronlyexertsaninfluenceonrelevanceratingswhenitisabsentandonlyresultsinhigherratingswhenamalespokespersonisused.
D.TwoFactorsareSignificant,NoInteractionBetweenFactors
Thefirststepcalculatestheaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-5.
Slide16-
6
Slide16-
7
Slide16-
8
Slide16-
9
F-valuesandlevelsofsignificancearecomputedforeachfactorandforinteractionbetweenthetwofactorsasshowninSlide16-6.
Datainterpretedasfollows:
? Genderexertedanindependentinfluenceonratingsofcommercialrelevance.Relevancewasratedhigherwhenthespokespersonwasfemaleversusmale.
? Humorexertedindependentinfluenceonratingsofcommercialrelevance.Therewasasignificantdifferencewhenhumorwaspresentversusabsent.Relevancewasratedhigherwhenhumorwaspresent.
? Therewasnosignificantinteractionbetweenthetwofactors.FindingsareillustratedinthegraphshowninSlide16-7.Notehowlinesfor
bothfactorsareparalleltoeachother(indicatingnointeraction)withthespace
betweenthemquitelarge.
E.NeitherFactorisSignificant,thereisanInteractionBetweenFactors
Thefirststepintheanalysiscalculatesaveragesforeachfactorindependentlyandforeachcombinationoffactors,asshowninSlide16-8.
F-valuesandlevelsofsignificancearecomputedforeachfactorandfortheinteractionbetweenthetwofactorsasshowninSlide16-9.
Dataindicates:
? Therewasasignificantinteractionbetweenthetwofactorsasthe
(a)fortheinteractionisgreaterthan.05.Indicatesthatweneed
tobecautiousininterpretingthedatarelevanttothemaineffects.
? Genderasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenthegenderofthespokespersonwasvaried.Examinationoftheindividualad’smeansindicatesthattherewasalargedifferencebetweenadswithafemalespokespersonandtheadswithamalespokesperson.
? Humorasamaineffecthadnosignificantinfluenceonratingsofcommercialrelevance.Therewasnosignificantdifferencewhenhumorwaspresentorabsent.Examinationofindividualad’s
meansshowsalargedifferencebetweenadswithhumorandtheadswithouthumor.
Slide16-
10
Slide16-
11
Slide16-
12
Slide16-
13
Slide16-
14
FindingsareillustratedinthegraphshowninSlide16-10.Notehowlinesrunatanangletoeachother,ratherthenrunningparallel.Graphindicatesthatfemalespokespeoplearebes
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車配件訂購協(xié)議
- 疫情防治藥品緊急采購協(xié)議
- 婚慶策劃合作細則
- 用功學(xué)習保證書
- 房屋買賣意向書簽訂注意事項詳解
- 采購代表合同樣式
- 生態(tài)休閑農(nóng)業(yè)項目規(guī)劃案
- 外墻裂紋修補涂料樣本
- 標準貸款合同格式
- 鋁合金建筑材料購銷協(xié)議
- 《認識地球(第1課時)》示范課教學(xué)設(shè)計【湘教版七年級地理上冊】
- 學(xué)?!敖景藗€一”臺賬目錄
- 心律失常PPT醫(yī)學(xué)課件
- 陜西省咸陽市秦都區(qū)2023-2024學(xué)年八年級上學(xué)期1月期末考試語文試題
- 校園眼鏡店 項目招商引資方案
- 高中語文統(tǒng)編版(部編版)必修 上冊第二單元4《喜看稻菽千重浪》《心有一團火 溫暖中人心》《“探界者”鐘揚》群文閱讀
- 生物制藥行業(yè)的經(jīng)營管理制度
- HACCP計劃年度評審報告
- 中職語文教案:高爾基(節(jié)選)教案
- 駕駛服務(wù)外包投標方案(完整版)
- 大學(xué)課件-機電傳動控制(完整)
評論
0/150
提交評論