版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
EnergyStorageTechnologyComparison
-Aknowledgeguidetosimplifyselectionofenergystoragetechnology
JohannaGustavsson
Reference:
http://www.greenenergystorage.eu
BachelorofScienceThesis
KTHSchoolofIndustrialEngineeringandManagementEnergyTechnologyEGI-2016
SE-10044STOCKHOLM
PAGE\*roman
viii
BachelorofScienceThesisEGI-2016EnergyStorageTechnologyComparison
JohannaGustavsson
Approved
Date
Examiner
ViktoriaMartin
Supervisor
SamanNimaliGunasekara
Commissioner
Contactperson
Abstract
Thepurposeofthisstudyhasbeentoincreasetheunderstandingofsomeofthemostcommonlyusedenergystoragetechnologies.Also,theworkaimedtocollectnumericvaluesofanumberofcommonparametersusedtoanalyzeenergystorage.Thesenumericvaluescouldthenbeusedasbasisforafirstevaluationoftheenergystoragetechnologythatisbestsuitedtoagivensituation.
Themethodwasdividedintothreemainphases.ThefirstphasewastogatherinformationonthedifferenttechnologiesandtoassesswhichoftheinformationthatwasrelevanttopresentinatechnicalsurveycalledEnergyStorageTechnologyMapping.Thispartwasdonetoachievethegoalofincreasetheinsightofdifferentenergystoragetechnologies.Thefollowingphasewas,onthebasisofthenumericvaluespresentedinthetechnicalsurvey,todevelopatooltofacilitatethechoiceofenergystoragetechnologiesindifferentsituations.Thefinalphaseconsistedofacasestudythatwasdonetodemonstratethetool’sutilityandevaluateitsperformance.
Withoutcomparingthestudiedtechnologieswithaspecificapplicationinmind,thefollowingwasstatedregardingthefourcategoriesofenergystoragetechnologies:
Electrochemical:highefficiency,shortstorageperiod
Mechanical:largecapacityandpower,highinitialinvestmentcostsandgeographicallylimited
Chemical:verylongstorageperiod,lowefficiency
Thermal:longlifetimeandhighefficiency,variabledependingonthemediumstudied
Fromtheliteraturestudyandtheresultsanumberofconclusionsweredrawn.Amongotherthings,itwaspossibletoconcludethatenvironmental-,social-andethicalaspectsshouldbetakenintoaccountaswellasthegeographical-andgeologicalconditions.Itwasalsopossibletoconcludethatthetechnologiescomparedwerefoundatdifferentstagesintermsofmaturityandcommercialuse,whichwasreflectedintheabilitytofindmoregeneralnumericvaluesrelativetothevalueslinkedtoaspecificapplication.
Sammanfattning
Syftetmeddennastudieharvaritatt?kaf?rst?elsenf?rn?graavdevanligasteenergilagringsteknikerna.Ut?verdetsyftadearbetettillattsamlainnumeriskav?rdenf?rettantalgemensammaparametrarsomkanansesrelevantaf?rattanalyseraenergilagring.Dessanumeriskav?rdenkundesedananv?ndassomunderlagvidenf?rstabed?mningavvilkenenergilagringstekniksom?rb?stl?mpadiolikasituationer.
Metodenvaruppdeladitreolikahuvudfaser.Denf?rstafasenbestodiattsamlaininformationomdeolikateknikernasamtbed?mavilkenavinformationensomvarl?mpligattpresenteraientekniskkartl?ggningvidnamnEnergyStorageTechnologyMapping.Dennadelgjordesf?rattuppn?m?letom?kadf?rst?elsef?rdeolikaenergilagringsteknikerna.Denefterf?ljandefasenbestodiattutifr?ndenumeriskav?rdenasompresenteratsidentekniskakartl?ggningentaframettredskapf?rattunderl?ttavaletavenergilagringsteknikvidolikasituationer.Densistafasenbestodavenfallstudiesomgjordesf?rattdemonstreraverktygetanv?ndbarhetsamtutv?rderadessprestanda.
Utanattj?mf?radestuderadeteknikernamedettspecifiktanv?ndningsomr?dei?tankekundef?ljandekonstaterasg?llandedefyraundergruppernaavenergilagringstekniker:
Elektrokemiska:h?geffektivitet,kortlagringstid
Mekaniska:storkapacitetochkraft,storainvesteringskostnaderochgeografisktbegr?nsade
Kemiska:mycketl?nglagringstid,l?geffektivitet
Termiska:l?nglivsl?ngdochh?geffektivitet,varierandeberoendep?studeratmedium
Fr?nlitteraturstudienochresultatetkundeettantalslutsatserdras.Blandannatvardetm?jligtattdraslutsatsenattmilj?-,sociala-ochetniskaaspekterb?rtasibeaktanliksomgeografiska-ochgeologiskaf?ruts?ttningar.Detgickocks?attdraslutsatsenattteknikernasomj?mf?rdesbefannssigp?olikastadiervadg?llermognadochkommersielltbrukvilket?terspegladesif?rm?ganattfinnamergenerellanumeriskav?rdenif?rh?llandetillv?rdenkoppladetillettspecifiktanv?ndningsomr?de.
Listofcontent
Abstract iii
Sammanfattning iv
Listofcontent v
Listoffigures vi
Listoftables vii
Nomenclature viii
Introduction. 1
Background 2
Problemdefinition 2
Purpose 2
Limitations 3
Methodology 3
EnergyStorageTechnologyMapping 4
ElectrochemicalStorage 5
LithiumIonBattery 5
SodiumSulfurBattery 7
LeadAcidBattery 8
RedoxFlowBattery 10
MechanicalStorage 11
CompressedAirEnergyStorage 11
PumpedHydroEnergyStorage 13
ChemicalStorage 15
Hydrogen 15
Methane 17
ThermalStorage 18
SensibleHeatStorage 18
LatentHeatStorage 19
Thermo-ChemicalEnergyStorage 20
TechnologyComparison–Resultsanddiscussion 21
Comparisonofdifferentenergystoragetechnologies 21
Casestudy:energystoragecomparisonatthreedifferentcases 24
Casenr1–Voltagesupport 24
Casenr2-Arbitrage 25
Casenr3–Wasteheatutilization 25
Otheraspectsandoveralldiscussion 26
Conclusionsandfuturework 28
Conclusions 28
Futurework 29
References 30
AppendixA 36
Listoffigures
Figure1:SchematicillustrationofthefourcategoriesandassociatedEST 3
Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart 4
Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16] 5
Figure4:SchematicdiagramdescribingthedesignofaLIB[17] 6
Figure5:SchematicdiagramdescribingthedesignofaSSB[17] 7
Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2] 9
Figure7:BasicconceptofaRedoxFlowbattery.Basedon[19] 10
Figure8:Schematicdiagramof(a)diabaticand(b)adiabaticCAESsystem[47].12Figure9:SchematicofPHESwithacombinedturbineandelectricgenerator.
Redrawnbasedon[51] 14
Figure10:Theelectrolysisofwater;showingwherethehydrogenandoxygenareproducedaswellasthesemipermeablediaphragmbetweenthetwohalf-cellsthatallowstheseparationofthetwogases[58] 16
Figure11:Hotwatertankconnectedtoasolarcollector,commonapplicationforSHSsystems.Basedon[68] 18
Listoftables
Table1:NumericvaluesofcriticalparametersforLIB 7
Table2:NumericvaluesofcriticalparametersforSSB 8
Table3:NumericvaluesofcriticalparametersforLAB 9
Table4:NumericvaluesofcriticalparametersforRFB 11
Table5:NumericvaluesofcriticalparametersforCAES 13
Table6:NumericvaluesofcriticalparametersforPHES 15
Table7:Numericvaluesofcriticalparametersforhydrogen 17
Table8:Numericvaluesofcriticalparametersformethane 17
Table9:NumericvaluesofcriticalparametersforSHS 19
Table10:NumericvaluesofcriticalparametersforLHS 20
Table11:NumericvaluesofcriticalparametersforTCES 21
Table12:Energystoragetechnologycomparisontable 22
Table13:Commonapplicationsintheenergysystem,includingsomecharacteristicparameters.Basedon[55] 36
Nomenclature
Abbreviation Denomination
CAES CompressedAirEnergyStorage
CES ChemicalEnergyStorage
ECES ElectrochemicalEnergyStorage
EST EnergyStorageTechnologies
LAB LeadAcidBatteries
LHS LatentHeatStorage
LIB LithiumIonBatteries
MES MechanicalEnergyStorage
PCM PhaseChangeMaterials
PCT PhaseChangeTemperature
PEM Proton-ExchangeMembrane
PHES PumpedHydroEnergyStorage
RFB RedoxFlowBatteries
SHS SensibleHeatStorage
SSB SodiumSulfurBatteries
TCES Thermo-ChemicalEnergyStorage
TES ThermalEnergyStorage
TRL TechnologyReadinessLevel
PAGE
10
Introduction
Beforetheindustrialrevolutionduringthe19thcentury,theneedofenergywasmodestcomparedwithtoday’ssituation.Theenergyneedintheindustrializedworldincreaseinlinewiththetechnologyadvancesmadeduringtheindustrialization.Oneofthemostimportanttechnicalinventionsisthediscoveryofelectricity.Eversinceelectricity,inthe20thcenturybecomeamatterofcourseinmanyindustrializedsocieties;theenergyneedhaveincreasedsignificantly[1].Today,comfortslikehotwater,airconditionerandoutletsprovidedwithelectricityistakenforgranted.Historically,thesourcesconvertingenergyintoelectricity,heatandcoldhavebeenmainlynon-renewable.Fossilfuelssuchasoil,petroleumandnaturalgashavefilledourneedsforalongperiodoftime[1].Productionofheat,coldandelectricityfromthesesourceshavetheabilitytoadapttodemand,hencetheneedofsupplementaryenergystorageislow.However,theseenergysourcesarefiniteandhaveshownnegativeenvironmentalimpact.Apartfromglobalwarming,theincreaseinthedifferentgreenhousegasescontributetooceanacidification,smogpollution,ozonedepletionaswellaschangestoplantgrowthandnutritionlevels[2].
Basedonincreaseddemand,thepriceoffossilfuelshasfirmlyrisenandanumberof“crises”havehadbigeconomicimpact.E.g.thefirstoilcrisisin1973morethandoubledthepriceofoilovernightandledtogreatreactionsworldwide[3].Amongotherthings,Francethenembarkonamajornuclearpowerprogramtoensureitsenergyindependence.Eversince,nuclearpoweraccountedforthebulkoftheelectricityproducedinFrance,correspondingto75%oftheelectricity[4].Asaresultofthedecision,Francehastoday(2016)almostthelowestcostofelectricityinEuropeandishighlyenergyindependent.Also,thecountryhasextremelylowlevelofCO2emissionspercapitafromelectricitygenerationbecauseofthehighproportionofnuclearpower.Nevertheless,nuclearpowerhascausedanumberofseriousaccidentsthathasledtodevastationresultsduetodangerouslyhighconcentrationsofradioactivesubstances[2].NomajoraccidentshaveoccurredinFrancebuttheradionuclidesspreadhasaffectedlargepartsoftheworld,notonlywithintheareawheretheaccidenthappened.
Nuclearaccidentsandglobalwarmingaswellastherisingpriceandlimitedamountoffossilfuelshasincreasedthenumberofdifferentenergysourcesandatthepresenttimetheproportionofrenewableenergysourceshaveincreased[5].Renewableenergysourcessuchassun-andwindpowerarelessharmfultotheenvironmentandinexhaustible.However,theyareunpredictableandmoredifficulttocontrol.Therefore,oneoftoday’slargestchallengesistomatchtheavailableenergywiththeenergydemandintime,placeandquantity[6].Thisappliesnotonlyelectricitybutalsothermalenergyintheformofheatandcold.Forexample,ifitispossibletostoretheenergygeneratedfromthesunduringsunnydaysorsummerseasonstotimeswithlesssunitcanminimizethelossinheatfromproductiontoconsumption.Inthatwayitispossibletousetheresidualheatlateroninsteadofusinge.g.additionalelectricitytogenerateheatfromanelectricalsourceofheatduringtimeswithlesssun.
PresentlythereisagreatnumberofEnergyStorageTechnologies(EST)availableonthemarket,oftendividedintoElectrochemicalEnergyStorage(ECES),MechanicalEnergyStorage(MES),ChemicalEnergyStorage(CES)andThermalEnergyStorage(TES).Allthetechnologieshavecertaindesignandoperationalparametersthatputconstraintstowheneacharesuitabletouse.Allofthetechnologieshavetheiradvantagesanddisadvantagesthereforewhichareidealindifferentsituationsandapplications.Themorematuretechnologiescurrentlyusedarepumpedhydroenergystorage(mechanical),somebatteries
e.g.lead-acid-andsodiumsulfurbatteries(electrochemical)aswellassensibleheatstorage(thermal)[7][8].Eventhoughtheconventionaltechnologiesallarewellknown,thedevelopmentinthefieldisvastandfast.Thiscreatesaneedtoamorein-depthknowledgeofeachtechnologytobeabletofindtheonemostsuitableforeachsituation.
Background
Renewableenergysourcesisahottopicduetoglobalwarming,severalnumbersofnaturaldisastersetc.Inordertooptimizeitsuse,energystoragehavebecomeinterestingandthereisquitealotofongoingresearchinthearea.ResearchandmanyofthepreviousstudiesonlyexamineandcompareESTwithinthesamecategory(electrochemical,mechanicaletc.).Thishasbeendoneinstudiessuchas:[9],[10]and[11].Also,manystudiescomparedifferentESTwithaparticularapplicationinmindorconversely,comparingdifferentapplicationswithaparticularEST.Thisisexemplifiedinfollowingstudies:[12],[13]and[14].However,therearegapsregardingmorecomprehensivecomparisonthatmakesitpossibletoanalyzeandcomparethestoragetechnologiesindependentlyofapplicationsorcategory.Thisprojectisfocusingonabiggerperspectiveandwithinthissectiontheproblemdefinition,thepurpose,thescopeoftheprojectandthelimitationsencounteredispresented.
Problemdefinition
EnergystorageisarelativelynewtopicforresearchandmanyESTareimmatureandnotcommerciallyusedatpresent(2016).ThismakesthelackofknowledgeforseveralnumbersofEST[15].Theoften-limitedknowledgemakesitdifficulttounderstandtheadvantagesanddisadvantagesofdifferenttechnologiesbutalsotodecidewhichstoragetechnologythatismostsuitableforwhatapplication.Currently,thesearethetwomajorproblemswithinthissubject.
Purpose
ThepurposewiththisstudyistoincreaseunderstandingofthemostcommonEST.ItisalsotogatherandpresentinformationandnumericvaluestodevelopatoolforfacilitatingafirstevaluationofthetypeoftheESTthatisthemostsuitableforparticularapplicationsandgeographicallocations.Byfulfillingthesepurposestheresultaimtoanswerthequestion“whichofthepresentedESTaremostsuitableforagivenapplication?”.
Limitations
ThenumberofESTavailabletodayismanyandtobeabletopresentaprofoundanalysissomelimitationshavebeennecessary.Thetechnologiestreatedwithinthisthesisarelimitedtoanumberofeleven.ThenumberofmethodsforfurthercategorizationofESTismany.Inthisstudyoneofthemostwidelyusedmethodhavebeenapplied.Thatmethodisbasedontheformofenergystoredinthesystem[15].Thetechnologiestreatedinthisstudyhavebeendividedintofourcategories.ThesecategoriesandincludingtechnologiesarepresentedinFigure1thataimstoclarifythecategorization.Thechoiceoftechnologiesisbasedonavailabilitybutalsoonthetechnology’spotentialandvariationpossibility.Someoftherathercommontechnologies,e.g.flywheelshavebeenexcludedsincesomeofitsdisadvantagesmakesitusefulinonlyalimitedrangeofapplication.Also,manyofthetechnologiesareavailableindifferentvariantsbutsincethisprojectaimstofacilitatingafirstevaluation,thetechnologiesarelimitedtoitsbasicdesign.ThestudyisnotgeographicallylimitedtoFrancebutithasbeenmadewiththecountry’sconditionsandcurrentlyenergystoragesituationinmind.Meaning,thepurposehasbeentoprovideaknowledgeguideandatoolthatcouldbeusedworldwidebutexamplesanddiscussionhavehadfocusonFrance.
Figure1:SchematicillustrationofthefourcategoriesandassociatedEST.
Methodology
Themethodologycanbedividedintothreemainphases.Initially,informationaboutdifferentESTwereretrievedfromvarioussourcesincludingscientificliteratureandpublicationsbutalsorelevantinformationfoundonwebpagesbelongingtodifferentorganizationsandcompanies.Afterenoughdatawasgathered,thefollowingphasewastocriticallyanalyzethedataobtainedandsortoutrelevantinformationtopresentintheliteraturestudynamedEnergyStorageTechnologyMapping.Themainapproachwastomapalloftheapplicationsand
storagetechnologiesbasedonanumberofimportantparametersthatthetechnologieshadincommon.ThesetwophasesmainpurposewastocollectandpresentrelevantinformationinordertoincreasetheknowledgeofdifferentEST.
Oncethecriticalanalysisandmappingwasdone,theterminativephasebegun.Thisphasewasacomparisonofthetechnologiestreatedintheliteraturestudy.Thiscomparisonwasbasedonthenumericvaluesforeachofthecommonparameters.ThepurposeofthisphasewastopresentsubstrateandatooltofacilitatingafirstevaluationofwhatkindofESTthatwasmostsuitableforagivenapplication.Tofinallydemonstratethetool’sfunctionandbeabletoevaluateitsperformanceasmallcasestudywasdone.Agraphicillustrationoftheworkflowandeachpart’spurposesarepresentedinFigure2.
Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart.
EnergyStorageTechnologyMapping
ThispartofthethesisisdesignedonthebasisofthedivisionspresentedinFigure1.Itthereforeconsistsofsections(4.1ElectrochemicalStorage,4.2MechanicalStorage,4.3ChemicalStorageand4.4ThermalStorage)representingthefourcategoriesoftechnologies:ECES,MES,CESandTES.Furthermore,everysectionconsistsoftwotofourdifferentsubsections(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)dependingofthenumberoftreatedESTineachsection.ThenameandnumberoftechnologiestreatedineachsubsectionisalsoillustratedinFigure1.
WithineachsectionpresentinganESTthetechnology’stechnicalconstructionincludingmajorcomponentsaredescribed.Also,commonlyusedapplicationsatthepresenttime(2016)andthemostcrucialconditionsanddesignandoperationalcriteriaareconsidered.EverysectionpresentinganEST(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)lastlycontainsatablewithnumericvaluesofcriticaldesignandoperationalparameters,presentedattheendofeachsection.Thispartaimstoprovidein-depthknowledgeofeachEST.Inordertoincreasetheunderstandingofeachandeverytechnology’sreadinesslevel,alreadyatthispoint,Figure3ispresentedbeforethefollowingsubsections.Theratingisbasedontheextenttowhichthetechnologyisappliedandusedindailylife.
Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16].
ElectrochemicalStorage
ECESisagenericnameforbatteriesbeingusedtostoreenergy.Batteriesareelectrochemicaldeviceswiththeabilitytoreadilyconvertthestoredenergyintoelectricalenergy.Sincetheyareportableandoftenquitesmalltheycanbelocatedanywherewithoutgeographicalconsiderations[16].Batteriescanbeeithernon-rechargeable(primary)orrechargeable(secondary),onlyrechargeablebatteriesareofinterestforlarge-scaleenergystorage[2].Batteriescanalsobeeithersolid-statebatteriesorflowbatteries.ThissectionpresentanumberofECEStechnologies,includingbothflow-andsolidstatebatteries.
LithiumIonBattery
LithiumIonbatteries(LIB),intheirmostcommonform,consistofapositiveelectrode(cathode)oflithiumoxides,anegativeelectrode(anode)ofgraphiteandanelectrolyteofalithiumsaltandorganicsolvent[2].Figure4isintendedtoclarifythetechnicaldesignofthebattery.
Figure4:SchematicdiagramdescribingthedesignofaLIB[17].
Lithiumhaslowdensityandlargestandardelectrodepotentialresultinginbatterieswithlowweightandhighoperatingvoltage[2].FurthermoreLIBhavenomemoryeffecta,lowself-chargeandoneofthebestenergy-to-massratiowhichmakesthemthemainenergystoragedevicesforportableelectronicssuchasmobilephones,TVsandiPads[18].Table1includesnumericvaluesforseveralparametersinordertoenablecomparisonbetweenLIBandotherEST.Thepropertieshaveproventobeadvantageousalsoforelectrictractionofvehicles,powertoolsandstorageofintermittentlyavailablerenewableenergyhenceLIBisincreasinglycommonintheseapplicationareas[17].AlthoughLIBareextensivelyusedinportableelectronicdevicesandarethemainfocusforelectricalvehicleapplications,theyareatpresent(2016)tooexpensiveforlarge-scalegridstorage.However,theresearchisextensiveandintheUnitedStatesthereisanumberoflithium-ion-baseddemonstrationsthathaverecentlybeeninstalledandtested.Thesesystemswouldbecapableofprovidingshort-termpoweroutputstabilizationforwindturbinesbut,comparedwithotheroptionsLIBarestilltoocostlytouseforapplicationinlongertermstorageofwindenergy[19].
FrancehasoneofthestrongesteconomiesinEuropeandmostoftheFrenchcitizenshavetheabilitytoownportableelectronics,includingLIB.Therefore,thenumberofLIBisquiteextensiveinthecountry[20].Furthermore,thenumberofplug-inhybridandelectricalvehiclehasincreaseddramaticallyinFranceoverthelastcoupleofyears[21].Theplug-inhybridcarsoftenuseNickel-metalbatteries(NiMH)butallofthemostboughtelectricalcars,suchasNissanLeafandFordFocusEVuseLIB[22][23].
aNomemoryeffect–thecapacityisnotreducedeventhoughthebatteryisnotfullydischargedbetweenchargecycles.
LIBhasalargeimpactonmetaldepletionandthelithiummining’stoxicityandlocationinnaturalenvironmentcancausesignificantenvironmental-,social-andhealthimpacts.Thereforeitscontinueduseneedstobemonitoredevenifthereisnoimmediateshortageoflithiumatpresent(2016).Although,LIBareconcededlylesstoxicthanmanyotherbatteries,e.g.lead-acidbatteries[24].
Advantages: Disadvantages:
Highefficiency[8] Expensive[25]
Lowweigh,smallbattery[26]
Table1:NumericvaluesofcriticalparametersforLIB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
[$/kWh]
0.001-
0.25-
Day-
75-200
300
85-100
1000-
175-
500-
0.1
25
month
[8]
[30]
[27]
4500
4000
2500
[27]
[28]
[29]
[31]
[16]b
[16]c
SodiumSulfurBattery
SodiumSulfurBatteries(SSB)consistoftwoactivematerials;moltensulfurasthepositiveelectrodeandmoltensodiumasthenegativeelectrode.ThebatteryisoftenreferredtoasNaSbatteryduetothechemicalabbreviationsofitstwomaincomponentssodium(Na)andSulfur(S).Asolidceramic,sodiumalumina,separatestheelectrodesandservesalsoastheelectrolyte[32].ASSBispresentedinFigure5thataimstoclarifythebattery’stechnicaldesign.
Figure5:SchematicdiagramdescribingthedesignofaSSB[17].
Thesematerialshavetheadvantagesoflowdensityandcost.ThespecificenergyofaSSBishigh,thecyclelifetimeislongcomparedtomanyotherbatteriesandthechargeefficiencyishigh[2].BecauseoftheseadvantagesSSBareconsideredanattractivecandidateforlarge-scaleenergystorageapplications[16].Evenso,bothsodiumandsulfurhaveacommoncharacteristicofbeinghighlycorrosive
bFrom2015
cFrom2015
whichmightcausecorrosiveproblems.CombinedwiththefactthattheSSBoperatesatatemperatureofaround300°Cmakesthebatteries,asmentionedmostsuitableforlarge-scaleenergystoragesuchasforthepowergrid[2].NumericvaluesforseveralparametersarepresentedinTable2thataimstoenableacomparisonbetweenSSBandotherEST.
ReunionIslandPegaseProjectisaprojectwhereSSBhavebeenusedtofacilitateloadlevelingandrenewableintegrationattheReunionIsland,aninsularregionofFrancelocatedintheIndianOcean.TheSSBhaveapowerlevelof1MWandcanprovidetheaverageusageof2000households[33].Also,overthelastdecadeSSBhasseenthelargestnumberofdemonstrationsandfieldtestsglobally,e.g.over190sitesinJapan.Although,furtheruptakeappearstohavesloweddownduetorecentsafetyconcerns[19].
Advantages: Disadvantages:
Longlifecycle[8] Highlycorrosivebehavior[8]
Highproductioncost[34]
Highoperatingtemp.[35]
Table2:NumericvaluesofcriticalparametersforSSB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
[$/kWh]
1-50
::300
Day
150[2]
150-
75-90
2500
1000-
300-
[36]
[28]
[37]
250
[8]
[16]
3000
500
[15]
[16]d
[8]e
LeadAcidBattery
LeadAcidBatteries(LAB)wasinventedbytheFrenchphysicistGastonPlantéalreadyin1859andwasthefirstpracticalrechargeablebattery.LABnormallyconsistsofleadoxide(PbO2)cathodesandlead(Pb)anodesimmersedinsulfuricacid(H2SO4),witheachcellconnectedinseries[38].ThetechnicaldesignisillustratedinFigure6includingthemaincomponentsjustmentioned.
dFrom2015
eFrom2015
Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2].
Comparingwithothersolidstatebatteries,thedensityisquitelowbutitcanprovidealargecurrentthatisagreatadvantageinmanyapplicationssuchasstartingacar[2].LABiswidelyusedevenwhensurgecurrentfisnotimportantandotherdesignscouldprovidehigherenergydensities.ThisisbecauseLABischeapcomparedtonewertechnologies.ThereforeLABisalsousedforstorageinbackuppowersuppliesaswellasforwheelchairs,golfcars,personnelcarriersandemergencylighting[39].LABemitslead,whichistoxicheavymetalwithsevereimpactsontheglobalbioaccumulation,alsowithpotentialriskstohumanhealth.However,LABcanberecycledseveralhundredtimesandarecurrentlythemostrecycledconsumerproduct.GiventhattheLABisrecycledthesebatteries’disposalisextremelysuccessfulfrombothcost-andenvironmentalperspectives[40].Table3includesnumericvaluesforseveralparametersandaimstoenablecomparisonbetweenLABandotherEST.
Advantages: Disadvantages:
Canprovidehighcurrent[2] Containstoxicsubstance[8]
Maturetechnology[8] Shortlifetime[8]
Highlyrecycled[40]
Table3:NumericvaluesofcriticalparametersforLAB
Power
[MW]
Capacity
[MWh]
StoragePeriod
[time]
SpecificEnergy
[kWh/ton]
EnergyDensity
[kWh/m3]
Efficiency
[%]
Lifetime
[#cycles]
PowerCost
[$/kW]
EnergyCost
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 意識的課件教學(xué)課件
- 2024年建筑工程施工合同詳細描述
- 2024年度戰(zhàn)略合作合同(含合作領(lǐng)域)
- 春艾青課件教學(xué)課件
- 2024年度水果品牌授權(quán)合同:授權(quán)生產(chǎn)和銷售的具體條款
- 2024年度金融服務(wù)合同:銀行為客戶提供2024年度綜合金融服務(wù)
- 2024年專利實施許可合同:生物醫(yī)藥產(chǎn)品專利應(yīng)用
- 2024年度航空器材買賣合同
- 幼兒清明課件教學(xué)課件
- 毛筆楷體課件教學(xué)課件
- 《創(chuàng)意改善生活》課件 2024-2025學(xué)年湘美版(2024)初中美術(shù)七年級上冊
- 黃瓜育種分析
- 砂石生產(chǎn)各工種安全操作規(guī)程
- 2019版外研社高中英語選擇性必修一~四單詞總表
- 從分數(shù)到分式的教學(xué)設(shè)計
- 狹窄隧道汽車雙向行PLC控制設(shè)計
- 移相整流變壓器設(shè)計及試驗
- 05S502閥門井圖集
- 舒方特方格練習(xí)(共6頁)
- 90、808系列鋁合金門窗自動計算下料表
- 管道定額價目表
評論
0/150
提交評論