儲能技術(shù) 比較_第1頁
儲能技術(shù) 比較_第2頁
儲能技術(shù) 比較_第3頁
儲能技術(shù) 比較_第4頁
儲能技術(shù) 比較_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

EnergyStorageTechnologyComparison

-Aknowledgeguidetosimplifyselectionofenergystoragetechnology

JohannaGustavsson

Reference:

http://www.greenenergystorage.eu

BachelorofScienceThesis

KTHSchoolofIndustrialEngineeringandManagementEnergyTechnologyEGI-2016

SE-10044STOCKHOLM

PAGE\*roman

viii

BachelorofScienceThesisEGI-2016EnergyStorageTechnologyComparison

JohannaGustavsson

Approved

Date

Examiner

ViktoriaMartin

Supervisor

SamanNimaliGunasekara

Commissioner

Contactperson

Abstract

Thepurposeofthisstudyhasbeentoincreasetheunderstandingofsomeofthemostcommonlyusedenergystoragetechnologies.Also,theworkaimedtocollectnumericvaluesofanumberofcommonparametersusedtoanalyzeenergystorage.Thesenumericvaluescouldthenbeusedasbasisforafirstevaluationoftheenergystoragetechnologythatisbestsuitedtoagivensituation.

Themethodwasdividedintothreemainphases.ThefirstphasewastogatherinformationonthedifferenttechnologiesandtoassesswhichoftheinformationthatwasrelevanttopresentinatechnicalsurveycalledEnergyStorageTechnologyMapping.Thispartwasdonetoachievethegoalofincreasetheinsightofdifferentenergystoragetechnologies.Thefollowingphasewas,onthebasisofthenumericvaluespresentedinthetechnicalsurvey,todevelopatooltofacilitatethechoiceofenergystoragetechnologiesindifferentsituations.Thefinalphaseconsistedofacasestudythatwasdonetodemonstratethetool’sutilityandevaluateitsperformance.

Withoutcomparingthestudiedtechnologieswithaspecificapplicationinmind,thefollowingwasstatedregardingthefourcategoriesofenergystoragetechnologies:

Electrochemical:highefficiency,shortstorageperiod

Mechanical:largecapacityandpower,highinitialinvestmentcostsandgeographicallylimited

Chemical:verylongstorageperiod,lowefficiency

Thermal:longlifetimeandhighefficiency,variabledependingonthemediumstudied

Fromtheliteraturestudyandtheresultsanumberofconclusionsweredrawn.Amongotherthings,itwaspossibletoconcludethatenvironmental-,social-andethicalaspectsshouldbetakenintoaccountaswellasthegeographical-andgeologicalconditions.Itwasalsopossibletoconcludethatthetechnologiescomparedwerefoundatdifferentstagesintermsofmaturityandcommercialuse,whichwasreflectedintheabilitytofindmoregeneralnumericvaluesrelativetothevalueslinkedtoaspecificapplication.

Sammanfattning

Syftetmeddennastudieharvaritatt?kaf?rst?elsenf?rn?graavdevanligasteenergilagringsteknikerna.Ut?verdetsyftadearbetettillattsamlainnumeriskav?rdenf?rettantalgemensammaparametrarsomkanansesrelevantaf?rattanalyseraenergilagring.Dessanumeriskav?rdenkundesedananv?ndassomunderlagvidenf?rstabed?mningavvilkenenergilagringstekniksom?rb?stl?mpadiolikasituationer.

Metodenvaruppdeladitreolikahuvudfaser.Denf?rstafasenbestodiattsamlaininformationomdeolikateknikernasamtbed?mavilkenavinformationensomvarl?mpligattpresenteraientekniskkartl?ggningvidnamnEnergyStorageTechnologyMapping.Dennadelgjordesf?rattuppn?m?letom?kadf?rst?elsef?rdeolikaenergilagringsteknikerna.Denefterf?ljandefasenbestodiattutifr?ndenumeriskav?rdenasompresenteratsidentekniskakartl?ggningentaframettredskapf?rattunderl?ttavaletavenergilagringsteknikvidolikasituationer.Densistafasenbestodavenfallstudiesomgjordesf?rattdemonstreraverktygetanv?ndbarhetsamtutv?rderadessprestanda.

Utanattj?mf?radestuderadeteknikernamedettspecifiktanv?ndningsomr?dei?tankekundef?ljandekonstaterasg?llandedefyraundergruppernaavenergilagringstekniker:

Elektrokemiska:h?geffektivitet,kortlagringstid

Mekaniska:storkapacitetochkraft,storainvesteringskostnaderochgeografisktbegr?nsade

Kemiska:mycketl?nglagringstid,l?geffektivitet

Termiska:l?nglivsl?ngdochh?geffektivitet,varierandeberoendep?studeratmedium

Fr?nlitteraturstudienochresultatetkundeettantalslutsatserdras.Blandannatvardetm?jligtattdraslutsatsenattmilj?-,sociala-ochetniskaaspekterb?rtasibeaktanliksomgeografiska-ochgeologiskaf?ruts?ttningar.Detgickocks?attdraslutsatsenattteknikernasomj?mf?rdesbefannssigp?olikastadiervadg?llermognadochkommersielltbrukvilket?terspegladesif?rm?ganattfinnamergenerellanumeriskav?rdenif?rh?llandetillv?rdenkoppladetillettspecifiktanv?ndningsomr?de.

Listofcontent

Abstract iii

Sammanfattning iv

Listofcontent v

Listoffigures vi

Listoftables vii

Nomenclature viii

Introduction. 1

Background 2

Problemdefinition 2

Purpose 2

Limitations 3

Methodology 3

EnergyStorageTechnologyMapping 4

ElectrochemicalStorage 5

LithiumIonBattery 5

SodiumSulfurBattery 7

LeadAcidBattery 8

RedoxFlowBattery 10

MechanicalStorage 11

CompressedAirEnergyStorage 11

PumpedHydroEnergyStorage 13

ChemicalStorage 15

Hydrogen 15

Methane 17

ThermalStorage 18

SensibleHeatStorage 18

LatentHeatStorage 19

Thermo-ChemicalEnergyStorage 20

TechnologyComparison–Resultsanddiscussion 21

Comparisonofdifferentenergystoragetechnologies 21

Casestudy:energystoragecomparisonatthreedifferentcases 24

Casenr1–Voltagesupport 24

Casenr2-Arbitrage 25

Casenr3–Wasteheatutilization 25

Otheraspectsandoveralldiscussion 26

Conclusionsandfuturework 28

Conclusions 28

Futurework 29

References 30

AppendixA 36

Listoffigures

Figure1:SchematicillustrationofthefourcategoriesandassociatedEST 3

Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart 4

Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16] 5

Figure4:SchematicdiagramdescribingthedesignofaLIB[17] 6

Figure5:SchematicdiagramdescribingthedesignofaSSB[17] 7

Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2] 9

Figure7:BasicconceptofaRedoxFlowbattery.Basedon[19] 10

Figure8:Schematicdiagramof(a)diabaticand(b)adiabaticCAESsystem[47].12Figure9:SchematicofPHESwithacombinedturbineandelectricgenerator.

Redrawnbasedon[51] 14

Figure10:Theelectrolysisofwater;showingwherethehydrogenandoxygenareproducedaswellasthesemipermeablediaphragmbetweenthetwohalf-cellsthatallowstheseparationofthetwogases[58] 16

Figure11:Hotwatertankconnectedtoasolarcollector,commonapplicationforSHSsystems.Basedon[68] 18

Listoftables

Table1:NumericvaluesofcriticalparametersforLIB 7

Table2:NumericvaluesofcriticalparametersforSSB 8

Table3:NumericvaluesofcriticalparametersforLAB 9

Table4:NumericvaluesofcriticalparametersforRFB 11

Table5:NumericvaluesofcriticalparametersforCAES 13

Table6:NumericvaluesofcriticalparametersforPHES 15

Table7:Numericvaluesofcriticalparametersforhydrogen 17

Table8:Numericvaluesofcriticalparametersformethane 17

Table9:NumericvaluesofcriticalparametersforSHS 19

Table10:NumericvaluesofcriticalparametersforLHS 20

Table11:NumericvaluesofcriticalparametersforTCES 21

Table12:Energystoragetechnologycomparisontable 22

Table13:Commonapplicationsintheenergysystem,includingsomecharacteristicparameters.Basedon[55] 36

Nomenclature

Abbreviation Denomination

CAES CompressedAirEnergyStorage

CES ChemicalEnergyStorage

ECES ElectrochemicalEnergyStorage

EST EnergyStorageTechnologies

LAB LeadAcidBatteries

LHS LatentHeatStorage

LIB LithiumIonBatteries

MES MechanicalEnergyStorage

PCM PhaseChangeMaterials

PCT PhaseChangeTemperature

PEM Proton-ExchangeMembrane

PHES PumpedHydroEnergyStorage

RFB RedoxFlowBatteries

SHS SensibleHeatStorage

SSB SodiumSulfurBatteries

TCES Thermo-ChemicalEnergyStorage

TES ThermalEnergyStorage

TRL TechnologyReadinessLevel

PAGE

10

Introduction

Beforetheindustrialrevolutionduringthe19thcentury,theneedofenergywasmodestcomparedwithtoday’ssituation.Theenergyneedintheindustrializedworldincreaseinlinewiththetechnologyadvancesmadeduringtheindustrialization.Oneofthemostimportanttechnicalinventionsisthediscoveryofelectricity.Eversinceelectricity,inthe20thcenturybecomeamatterofcourseinmanyindustrializedsocieties;theenergyneedhaveincreasedsignificantly[1].Today,comfortslikehotwater,airconditionerandoutletsprovidedwithelectricityistakenforgranted.Historically,thesourcesconvertingenergyintoelectricity,heatandcoldhavebeenmainlynon-renewable.Fossilfuelssuchasoil,petroleumandnaturalgashavefilledourneedsforalongperiodoftime[1].Productionofheat,coldandelectricityfromthesesourceshavetheabilitytoadapttodemand,hencetheneedofsupplementaryenergystorageislow.However,theseenergysourcesarefiniteandhaveshownnegativeenvironmentalimpact.Apartfromglobalwarming,theincreaseinthedifferentgreenhousegasescontributetooceanacidification,smogpollution,ozonedepletionaswellaschangestoplantgrowthandnutritionlevels[2].

Basedonincreaseddemand,thepriceoffossilfuelshasfirmlyrisenandanumberof“crises”havehadbigeconomicimpact.E.g.thefirstoilcrisisin1973morethandoubledthepriceofoilovernightandledtogreatreactionsworldwide[3].Amongotherthings,Francethenembarkonamajornuclearpowerprogramtoensureitsenergyindependence.Eversince,nuclearpoweraccountedforthebulkoftheelectricityproducedinFrance,correspondingto75%oftheelectricity[4].Asaresultofthedecision,Francehastoday(2016)almostthelowestcostofelectricityinEuropeandishighlyenergyindependent.Also,thecountryhasextremelylowlevelofCO2emissionspercapitafromelectricitygenerationbecauseofthehighproportionofnuclearpower.Nevertheless,nuclearpowerhascausedanumberofseriousaccidentsthathasledtodevastationresultsduetodangerouslyhighconcentrationsofradioactivesubstances[2].NomajoraccidentshaveoccurredinFrancebuttheradionuclidesspreadhasaffectedlargepartsoftheworld,notonlywithintheareawheretheaccidenthappened.

Nuclearaccidentsandglobalwarmingaswellastherisingpriceandlimitedamountoffossilfuelshasincreasedthenumberofdifferentenergysourcesandatthepresenttimetheproportionofrenewableenergysourceshaveincreased[5].Renewableenergysourcessuchassun-andwindpowerarelessharmfultotheenvironmentandinexhaustible.However,theyareunpredictableandmoredifficulttocontrol.Therefore,oneoftoday’slargestchallengesistomatchtheavailableenergywiththeenergydemandintime,placeandquantity[6].Thisappliesnotonlyelectricitybutalsothermalenergyintheformofheatandcold.Forexample,ifitispossibletostoretheenergygeneratedfromthesunduringsunnydaysorsummerseasonstotimeswithlesssunitcanminimizethelossinheatfromproductiontoconsumption.Inthatwayitispossibletousetheresidualheatlateroninsteadofusinge.g.additionalelectricitytogenerateheatfromanelectricalsourceofheatduringtimeswithlesssun.

PresentlythereisagreatnumberofEnergyStorageTechnologies(EST)availableonthemarket,oftendividedintoElectrochemicalEnergyStorage(ECES),MechanicalEnergyStorage(MES),ChemicalEnergyStorage(CES)andThermalEnergyStorage(TES).Allthetechnologieshavecertaindesignandoperationalparametersthatputconstraintstowheneacharesuitabletouse.Allofthetechnologieshavetheiradvantagesanddisadvantagesthereforewhichareidealindifferentsituationsandapplications.Themorematuretechnologiescurrentlyusedarepumpedhydroenergystorage(mechanical),somebatteries

e.g.lead-acid-andsodiumsulfurbatteries(electrochemical)aswellassensibleheatstorage(thermal)[7][8].Eventhoughtheconventionaltechnologiesallarewellknown,thedevelopmentinthefieldisvastandfast.Thiscreatesaneedtoamorein-depthknowledgeofeachtechnologytobeabletofindtheonemostsuitableforeachsituation.

Background

Renewableenergysourcesisahottopicduetoglobalwarming,severalnumbersofnaturaldisastersetc.Inordertooptimizeitsuse,energystoragehavebecomeinterestingandthereisquitealotofongoingresearchinthearea.ResearchandmanyofthepreviousstudiesonlyexamineandcompareESTwithinthesamecategory(electrochemical,mechanicaletc.).Thishasbeendoneinstudiessuchas:[9],[10]and[11].Also,manystudiescomparedifferentESTwithaparticularapplicationinmindorconversely,comparingdifferentapplicationswithaparticularEST.Thisisexemplifiedinfollowingstudies:[12],[13]and[14].However,therearegapsregardingmorecomprehensivecomparisonthatmakesitpossibletoanalyzeandcomparethestoragetechnologiesindependentlyofapplicationsorcategory.Thisprojectisfocusingonabiggerperspectiveandwithinthissectiontheproblemdefinition,thepurpose,thescopeoftheprojectandthelimitationsencounteredispresented.

Problemdefinition

EnergystorageisarelativelynewtopicforresearchandmanyESTareimmatureandnotcommerciallyusedatpresent(2016).ThismakesthelackofknowledgeforseveralnumbersofEST[15].Theoften-limitedknowledgemakesitdifficulttounderstandtheadvantagesanddisadvantagesofdifferenttechnologiesbutalsotodecidewhichstoragetechnologythatismostsuitableforwhatapplication.Currently,thesearethetwomajorproblemswithinthissubject.

Purpose

ThepurposewiththisstudyistoincreaseunderstandingofthemostcommonEST.ItisalsotogatherandpresentinformationandnumericvaluestodevelopatoolforfacilitatingafirstevaluationofthetypeoftheESTthatisthemostsuitableforparticularapplicationsandgeographicallocations.Byfulfillingthesepurposestheresultaimtoanswerthequestion“whichofthepresentedESTaremostsuitableforagivenapplication?”.

Limitations

ThenumberofESTavailabletodayismanyandtobeabletopresentaprofoundanalysissomelimitationshavebeennecessary.Thetechnologiestreatedwithinthisthesisarelimitedtoanumberofeleven.ThenumberofmethodsforfurthercategorizationofESTismany.Inthisstudyoneofthemostwidelyusedmethodhavebeenapplied.Thatmethodisbasedontheformofenergystoredinthesystem[15].Thetechnologiestreatedinthisstudyhavebeendividedintofourcategories.ThesecategoriesandincludingtechnologiesarepresentedinFigure1thataimstoclarifythecategorization.Thechoiceoftechnologiesisbasedonavailabilitybutalsoonthetechnology’spotentialandvariationpossibility.Someoftherathercommontechnologies,e.g.flywheelshavebeenexcludedsincesomeofitsdisadvantagesmakesitusefulinonlyalimitedrangeofapplication.Also,manyofthetechnologiesareavailableindifferentvariantsbutsincethisprojectaimstofacilitatingafirstevaluation,thetechnologiesarelimitedtoitsbasicdesign.ThestudyisnotgeographicallylimitedtoFrancebutithasbeenmadewiththecountry’sconditionsandcurrentlyenergystoragesituationinmind.Meaning,thepurposehasbeentoprovideaknowledgeguideandatoolthatcouldbeusedworldwidebutexamplesanddiscussionhavehadfocusonFrance.

Figure1:SchematicillustrationofthefourcategoriesandassociatedEST.

Methodology

Themethodologycanbedividedintothreemainphases.Initially,informationaboutdifferentESTwereretrievedfromvarioussourcesincludingscientificliteratureandpublicationsbutalsorelevantinformationfoundonwebpagesbelongingtodifferentorganizationsandcompanies.Afterenoughdatawasgathered,thefollowingphasewastocriticallyanalyzethedataobtainedandsortoutrelevantinformationtopresentintheliteraturestudynamedEnergyStorageTechnologyMapping.Themainapproachwastomapalloftheapplicationsand

storagetechnologiesbasedonanumberofimportantparametersthatthetechnologieshadincommon.ThesetwophasesmainpurposewastocollectandpresentrelevantinformationinordertoincreasetheknowledgeofdifferentEST.

Oncethecriticalanalysisandmappingwasdone,theterminativephasebegun.Thisphasewasacomparisonofthetechnologiestreatedintheliteraturestudy.Thiscomparisonwasbasedonthenumericvaluesforeachofthecommonparameters.ThepurposeofthisphasewastopresentsubstrateandatooltofacilitatingafirstevaluationofwhatkindofESTthatwasmostsuitableforagivenapplication.Tofinallydemonstratethetool’sfunctionandbeabletoevaluateitsperformanceasmallcasestudywasdone.Agraphicillustrationoftheworkflowandeachpart’spurposesarepresentedinFigure2.

Figure2:Graphicdemonstrationoftheworkflowandpurposeofeachpart.

EnergyStorageTechnologyMapping

ThispartofthethesisisdesignedonthebasisofthedivisionspresentedinFigure1.Itthereforeconsistsofsections(4.1ElectrochemicalStorage,4.2MechanicalStorage,4.3ChemicalStorageand4.4ThermalStorage)representingthefourcategoriesoftechnologies:ECES,MES,CESandTES.Furthermore,everysectionconsistsoftwotofourdifferentsubsections(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)dependingofthenumberoftreatedESTineachsection.ThenameandnumberoftechnologiestreatedineachsubsectionisalsoillustratedinFigure1.

WithineachsectionpresentinganESTthetechnology’stechnicalconstructionincludingmajorcomponentsaredescribed.Also,commonlyusedapplicationsatthepresenttime(2016)andthemostcrucialconditionsanddesignandoperationalcriteriaareconsidered.EverysectionpresentinganEST(4.1.1LithiumIonBattery,4.1.2SodiumSulfurBatteryetc.)lastlycontainsatablewithnumericvaluesofcriticaldesignandoperationalparameters,presentedattheendofeachsection.Thispartaimstoprovidein-depthknowledgeofeachEST.Inordertoincreasetheunderstandingofeachandeverytechnology’sreadinesslevel,alreadyatthispoint,Figure3ispresentedbeforethefollowingsubsections.Theratingisbasedontheextenttowhichthetechnologyisappliedandusedindailylife.

Figure3:Figuredemonstratingthetechnologyreadinesslevel(TRL)ofthedifferenttechnologies[16].

ElectrochemicalStorage

ECESisagenericnameforbatteriesbeingusedtostoreenergy.Batteriesareelectrochemicaldeviceswiththeabilitytoreadilyconvertthestoredenergyintoelectricalenergy.Sincetheyareportableandoftenquitesmalltheycanbelocatedanywherewithoutgeographicalconsiderations[16].Batteriescanbeeithernon-rechargeable(primary)orrechargeable(secondary),onlyrechargeablebatteriesareofinterestforlarge-scaleenergystorage[2].Batteriescanalsobeeithersolid-statebatteriesorflowbatteries.ThissectionpresentanumberofECEStechnologies,includingbothflow-andsolidstatebatteries.

LithiumIonBattery

LithiumIonbatteries(LIB),intheirmostcommonform,consistofapositiveelectrode(cathode)oflithiumoxides,anegativeelectrode(anode)ofgraphiteandanelectrolyteofalithiumsaltandorganicsolvent[2].Figure4isintendedtoclarifythetechnicaldesignofthebattery.

Figure4:SchematicdiagramdescribingthedesignofaLIB[17].

Lithiumhaslowdensityandlargestandardelectrodepotentialresultinginbatterieswithlowweightandhighoperatingvoltage[2].FurthermoreLIBhavenomemoryeffecta,lowself-chargeandoneofthebestenergy-to-massratiowhichmakesthemthemainenergystoragedevicesforportableelectronicssuchasmobilephones,TVsandiPads[18].Table1includesnumericvaluesforseveralparametersinordertoenablecomparisonbetweenLIBandotherEST.Thepropertieshaveproventobeadvantageousalsoforelectrictractionofvehicles,powertoolsandstorageofintermittentlyavailablerenewableenergyhenceLIBisincreasinglycommonintheseapplicationareas[17].AlthoughLIBareextensivelyusedinportableelectronicdevicesandarethemainfocusforelectricalvehicleapplications,theyareatpresent(2016)tooexpensiveforlarge-scalegridstorage.However,theresearchisextensiveandintheUnitedStatesthereisanumberoflithium-ion-baseddemonstrationsthathaverecentlybeeninstalledandtested.Thesesystemswouldbecapableofprovidingshort-termpoweroutputstabilizationforwindturbinesbut,comparedwithotheroptionsLIBarestilltoocostlytouseforapplicationinlongertermstorageofwindenergy[19].

FrancehasoneofthestrongesteconomiesinEuropeandmostoftheFrenchcitizenshavetheabilitytoownportableelectronics,includingLIB.Therefore,thenumberofLIBisquiteextensiveinthecountry[20].Furthermore,thenumberofplug-inhybridandelectricalvehiclehasincreaseddramaticallyinFranceoverthelastcoupleofyears[21].Theplug-inhybridcarsoftenuseNickel-metalbatteries(NiMH)butallofthemostboughtelectricalcars,suchasNissanLeafandFordFocusEVuseLIB[22][23].

aNomemoryeffect–thecapacityisnotreducedeventhoughthebatteryisnotfullydischargedbetweenchargecycles.

LIBhasalargeimpactonmetaldepletionandthelithiummining’stoxicityandlocationinnaturalenvironmentcancausesignificantenvironmental-,social-andhealthimpacts.Thereforeitscontinueduseneedstobemonitoredevenifthereisnoimmediateshortageoflithiumatpresent(2016).Although,LIBareconcededlylesstoxicthanmanyotherbatteries,e.g.lead-acidbatteries[24].

Advantages: Disadvantages:

Highefficiency[8] Expensive[25]

Lowweigh,smallbattery[26]

Table1:NumericvaluesofcriticalparametersforLIB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

[$/kWh]

0.001-

0.25-

Day-

75-200

300

85-100

1000-

175-

500-

0.1

25

month

[8]

[30]

[27]

4500

4000

2500

[27]

[28]

[29]

[31]

[16]b

[16]c

SodiumSulfurBattery

SodiumSulfurBatteries(SSB)consistoftwoactivematerials;moltensulfurasthepositiveelectrodeandmoltensodiumasthenegativeelectrode.ThebatteryisoftenreferredtoasNaSbatteryduetothechemicalabbreviationsofitstwomaincomponentssodium(Na)andSulfur(S).Asolidceramic,sodiumalumina,separatestheelectrodesandservesalsoastheelectrolyte[32].ASSBispresentedinFigure5thataimstoclarifythebattery’stechnicaldesign.

Figure5:SchematicdiagramdescribingthedesignofaSSB[17].

Thesematerialshavetheadvantagesoflowdensityandcost.ThespecificenergyofaSSBishigh,thecyclelifetimeislongcomparedtomanyotherbatteriesandthechargeefficiencyishigh[2].BecauseoftheseadvantagesSSBareconsideredanattractivecandidateforlarge-scaleenergystorageapplications[16].Evenso,bothsodiumandsulfurhaveacommoncharacteristicofbeinghighlycorrosive

bFrom2015

cFrom2015

whichmightcausecorrosiveproblems.CombinedwiththefactthattheSSBoperatesatatemperatureofaround300°Cmakesthebatteries,asmentionedmostsuitableforlarge-scaleenergystoragesuchasforthepowergrid[2].NumericvaluesforseveralparametersarepresentedinTable2thataimstoenableacomparisonbetweenSSBandotherEST.

ReunionIslandPegaseProjectisaprojectwhereSSBhavebeenusedtofacilitateloadlevelingandrenewableintegrationattheReunionIsland,aninsularregionofFrancelocatedintheIndianOcean.TheSSBhaveapowerlevelof1MWandcanprovidetheaverageusageof2000households[33].Also,overthelastdecadeSSBhasseenthelargestnumberofdemonstrationsandfieldtestsglobally,e.g.over190sitesinJapan.Although,furtheruptakeappearstohavesloweddownduetorecentsafetyconcerns[19].

Advantages: Disadvantages:

Longlifecycle[8] Highlycorrosivebehavior[8]

Highproductioncost[34]

Highoperatingtemp.[35]

Table2:NumericvaluesofcriticalparametersforSSB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

[$/kWh]

1-50

::300

Day

150[2]

150-

75-90

2500

1000-

300-

[36]

[28]

[37]

250

[8]

[16]

3000

500

[15]

[16]d

[8]e

LeadAcidBattery

LeadAcidBatteries(LAB)wasinventedbytheFrenchphysicistGastonPlantéalreadyin1859andwasthefirstpracticalrechargeablebattery.LABnormallyconsistsofleadoxide(PbO2)cathodesandlead(Pb)anodesimmersedinsulfuricacid(H2SO4),witheachcellconnectedinseries[38].ThetechnicaldesignisillustratedinFigure6includingthemaincomponentsjustmentioned.

dFrom2015

eFrom2015

Figure6:Leadacidbatterywithsixcells:outputvoltage≈12V[2].

Comparingwithothersolidstatebatteries,thedensityisquitelowbutitcanprovidealargecurrentthatisagreatadvantageinmanyapplicationssuchasstartingacar[2].LABiswidelyusedevenwhensurgecurrentfisnotimportantandotherdesignscouldprovidehigherenergydensities.ThisisbecauseLABischeapcomparedtonewertechnologies.ThereforeLABisalsousedforstorageinbackuppowersuppliesaswellasforwheelchairs,golfcars,personnelcarriersandemergencylighting[39].LABemitslead,whichistoxicheavymetalwithsevereimpactsontheglobalbioaccumulation,alsowithpotentialriskstohumanhealth.However,LABcanberecycledseveralhundredtimesandarecurrentlythemostrecycledconsumerproduct.GiventhattheLABisrecycledthesebatteries’disposalisextremelysuccessfulfrombothcost-andenvironmentalperspectives[40].Table3includesnumericvaluesforseveralparametersandaimstoenablecomparisonbetweenLABandotherEST.

Advantages: Disadvantages:

Canprovidehighcurrent[2] Containstoxicsubstance[8]

Maturetechnology[8] Shortlifetime[8]

Highlyrecycled[40]

Table3:NumericvaluesofcriticalparametersforLAB

Power

[MW]

Capacity

[MWh]

StoragePeriod

[time]

SpecificEnergy

[kWh/ton]

EnergyDensity

[kWh/m3]

Efficiency

[%]

Lifetime

[#cycles]

PowerCost

[$/kW]

EnergyCost

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論