版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE
1
copyright?2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
PAGE
10
copyright?2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
EnErgYSToragETEcHnoLogYPrIMEr:
aSuMMarY
Background
Energycanbestoredinelectrical,mechanical,electro-chemical,chemicalandthermalmeans,whiledeliveringthefinalenergyinelectricalform.(SeeFigure1.)
Type
Sub-group
Examples(notexhaustive)
TypicalApplications
Electrical
Capacitors
Capacitorsandultracapacitors
Powerquality
Superconductors
SuperconductingMagneticEnergyStorage(SMES)
Powerquality,reliability
Mechanical
Potentialenergyinstoragemedium
Pumpedhydro,
Energymanagement,reserve
Compressedairenergystorage(CAES)
Energymanagement,reserve
Kineticenergyinstoragemedium
Low-speedflywheels
Uninterruptiblepowersupply
Advancedflywheels
Powerquality
Electro-chemical
Low-temperaturebatteries
Lead-acid
Powerquality,standbypower
Nickel-cadmium
Powerquality
Lithiumcells
Powerquality
High-temperaturebatteries
Sodium-sulphur
Multi-functional
Sodium-nickelchloride
Standbypower,remoteareaapplications
Flowbatteries
Zinc-bromine
Multi-functional
Vanadium
Remoteareaapplications
Polysulphide-bromine
Multi-functional
Cerium-zinc
-
Chemical
Hydrogencycle
Electrolyser/fuelcellcombination
-
Otherstoragemedia
e.g.chemicalhydrides
-
Thermal
Hotwater
-
Peakshaving
Ceramics
-
Peakshaving
Moltensalt/steam
-
Integrationofrenewable
Ice
-
Peakshaving
Figure1:StorageTypegroupedbyTechnology1
1Source:anthonyPrice,“ElectricalEnergyStorage-areviewofTechnologyoptions”(nov2005),ProceedingsofIcE,civilEngineering158,pgs52-58.
EnergyStorageTechnologyPrimer:aSummary
STagESoFcoMMErcIaLMaTurITY
VRB
Lead-AcidBatteries
Ni-CdBatteries
PumpedHydro
Zn-Br
currently,energystorage(ES)systemspresentedinFigure2areinvariousstagesofcommercialmaturity.Forstationaryutilityapplication2,pumpedhydroelectricityisthedominantcommerciallyavailablesolution(~123gW)globally,withotheradvancedenergysolutionssuchassodium-sulfur,lead-acidandzinc-brominebatteries3,compressedairenergystorage(caES)4,thermalenergystorage5,batteries,flywheels6andotherstrailingbehindandunderdevelopment.Fortransportapplication(i.e.electromobility,ore-mobility),extensivedevelopmentalworkhasbeenfocusedonbatterytechnologies.Lead-acidbatteryisamatureenergystoragetechnology7buthasnotbeencommerciallyviablefore-mobilityapplication.Themainenergystoragetechnologiesaredescribedatappendixa.Figure3presentsestimatedworldwideinstalledenergystoragecapacity.
ThermalEnergyStorage
LithiumBatteries
Metal-Air
LargeSMES
NASBatteries
LowEnergySupercapacitors
CAES
FlowBatteries
HighEnergySupercapacitors
LowSpeedFlywheels
FuelCell
Micro-SMES
Design Developmentand
Prototype
MatureProducts
HighSpeedFlywheels
Figure2:commercialmaturityofdifferentenergystoragesystems
2canbeeithercentralizedordistributedandcanbeutility-owned,customer-ownedorthird-partyowned.
3Mainlydemonstrationorprototypeunitsandoftenalongsiderenewableand/ordistributedenergysources.
4IncaES,off-peakpowerisusedtopumpairintoasealedundergroundcaverntoahighpressure.Whenneeded,thishighpressureaircandriveturbinestogeneratepowerduringpeakhours.
5Thermalenergystorage(TES)isaconceptwherebyenergyisstoredasthermalenergyinenergystoragereservoirstobalanceenergydemandbetweendaytimeandnighttime.Thethermalreservoirmaybemaintainedatatemperatureabove(hotter)orbelow(colder)thatoftheambientenvironment.Themainusesareproductionoficeorchilledwatertocoolenvironmentsduringtheday,andthegenerationofelectricalenergy(throughtheuseofsteam)byhightemperaturestoragesaltswhenthedemandishighintheday.
6Flywheelsworkbyacceleratingrotorswithasignificantmomentofinertia,andmaintainingtheenergyinthesystemasrotationalenergy.Thisenergycanbeconvertedtoelectricalenergywhenneeded.
7notasamainsourceofenergy,replacinggasoline,butmainlyasanauxiliarypowersource.
PAGE
11
copyright?2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
PAGE
4
copyright?2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
Flywheelsandothers:95MW
Batteries:451MW
Thermal:1002MW
compressedair:440MW
MoltenSalt:142MW
Figure3:Estimatedworldwideinstalledenergystoragecapacity(2128MW)in20108
aPPLIcaTIonoFEnErgYSToragEInSIngaPorE
TheuseofenergystorageinSingaporeismostapplicableinthefollowingareas:
Electricvehicleswhichrequiremediumscaleenergystorage(100kWto500kW);
Smartgridsupportinginfrastructurewhichrequiremediumtolargescaleenergystorage(atleast0.1MW);
Buildingmanagement/renewableenergysmoothingwithsmalltomediumscaleenergystorage(1kWto100kW).SeeFigure4.
ElectricVehicle(EnergyStorage)
(TransportscaleES)
Fuel/Energy
Generation
Transmission
Distribution
ElectricityCustomers
EnergyStorage
EnergyStorage
SmartGrid
(LargetomediumscaleES)
HousingandBuilding
(MediumtosmallscaleES)
1GW 100MW 10MW 100kW 10kW
Power
Figure4:ElectricityValuechain
8Source:StrategenandcESaresearch.Excludespumpedhydrocapacity,estimatedat~123gW.
Energystoragetechnologiesthatareapplicabletotheseapplicationsconsistofmainlybattery-basedtechnologies,aswellasFlywheels,HydrogenStorage,Supercapacitor,PumpedHydroelectricity,compressedairEnergyStorage(caES),SuperconductingMagneticEnergyStorage(SMES)andThermalEnergyStorage.asummaryoftherelevantenergystoragetechnologiesareshowninFigure5.
Applications
EnergyStorageTechnologies
E-Mobility
Lead-AcidBatteries ?FuelCell*
Li-ionBatteries ?Supercapacitor
MetalAirBatteries
NiCdBatteries
SmartGrid
NaSBatteries ?HighPower ?Pumped- ?Super- ?FlowZnBr
Lead-Acid Flywheels hydroelectricity capacitor ?FlowVRB
Batteries ?MicroSMES ?CAES ?FuelCell*
Li-ionBatteries ?LargeSMES ?Thermal
MetalAir
Batteries
NiCdBatteries
Housing&Building
Lead-AcidBatteries ?Thermal
Li-ionBatteries ?FuelCell*
MetalAirBatteries
Figure5:Energystoragetechnologiesandtheirapplications
*utiliseschemicalenergyfromHydrogenstorage.
EnErgYSToragEForTranSPorTaPPLIcaTIonInSIngaPorE
ElectricVehicles(EVs)areseenasthefuturesustainablemodeoftransportworldwideastheyofferthefollowingadvantagesoverinternalcombustionenginecars:
EnergyEfficient.Theelectricmotorsconvert75%ofthechemicalenergyfromthebatteriestopowerthewheels.Thisisunlikeinternalcombustionenginesthatonlyconvert20%oftheenergystoredinthegasoline.
Environmentalfriendliness.currentwell-to-wheelemissionestimatesfromoriginalEquipmentmanufacturers(oEMs)showabout66%reductionincarbonemissionswhenswitchingfromagasolinecartoanequivalent-sizeEV.9Thisreducespollutionintraffics,althoughthesametailpipepollutantswillbepresentatfossil-fuelbasedpowerplantthatproducestheneededelectricity.Therewillbenoairpollutantforelectricityproducedfromrenewableenergysources(e.g.wind,solar,hydroetc.)
9“renault-nissanalliancePartnerswithSingaporegovernmentforZero-EmissionMobility”(accessed29april2011).
/En/nEWS/2009/_STorY/090507-05-e.html
TheauthorsassessthatinSingapore,batteryisthemajormeanofenergystoragetoprovideelectricitytothevehicleandoneofthekeytechnologiesforvehicleelectrification.However,EVsfacesignificantbattery-relatedchallenges.Amongthecurrentbatteryoptions,theauthorsrecommendthatlithium-ionbatteriesarethemostpromising,astheyholdmorethan5timesthespecificenergyand10timesofspecificpowercomparedtotheconventionalleadacidbatteries-promisingaviableformofenergystorage.However,thetechnologystillfacesthefollowingkeyhurdlesforeffectivedeployment:
Longchargingtime.Lithium-ionbatteriesarenotsuitedforfastcharging.unlikecurrentre-fuelingwhichtakesaround5-10minsatpetrolstation,afullrechargeoflithium-ionbatteriescantake2to8hours10.Even“quickcharging”technologiesto80%capacitycantake30minutesandcanbedetrimentaltothebatterylifecycle.
Lowerenergystoragecapacitycomparedtogasoline.Thecommutingrangeofafullychargedbatterypackdependsverymuchonthecapacityofthebatteries,thetypeofroutestraveled,whetherair-conditioning(usesalotofelectricpower)isturnedonandalsodriverhabits.currentbatterytechnologyonafullchargewouldallowarangeofbetween90kmto160km5.Thisismuchlowerthanthetypicalrangeofgasolinethatgoesabove400kmonafulltank.Thiscallsformorefrequentrecharge.
BatteryCost.currentbatterypacksforEVsareexpensive.ThecurrentexpectedcostisarounduSd400-uSd800/kWh.ThisisexpectedtoreducetouSd300-uSd500/kWhby202011.IEaestimatedbatterycostsforPlug-inHybridEVs(PHEVs)andEVsmustdroptowardsuSd300/kWhtobringEVscosttocompetitivelevels.
Lowersafetylevel.underhighstressoperationconditions,largelithium-ionbatterypacksmayundergoathermalrunaway,whicheventuallyresultsinthebatterycatchingfireandexploding.Thisriskishigherasbatteriesbecome“older”butcanbealleviatedbyusingadvancedbatterymanagementsystems(BMS).
E-MoBILITYProjEcTSInSIngaPorE
anEVtaskforce,chairedbytheEnergyMarketingauthority(EMa)andtheLandTransportauthority(LTa)hasbeensetupwithrepresentativesfromgovernmentagenciestoleadtestsandresearchintotheintroductionofEVsinSingaporefrom2010.9,12S$20millionoffundingwassetasidetosupportinfrastructuredevelopmentandtoanalysetherobustness,cost-effectivenessandenvironmentalimpactofelectric-poweredvehiclesinatropicalclimateandautomakers,suchasrenaultandnissan13,havebeeninvolvedinthesestudies.
TheEVtest-bedwaslaunchedinjune2011andwilllasttillend2013.Thetest-bedwillfocusongatheringdataandinsightstoguidetheplanningforthefuturedeploymentofEVs,includingtheoptimalratioofchargingstationsto
10“FactsheetonElectricVehicles(EVs)”,EMa.
11“ElectricPlug-InHybridVehicleroadmap”,IEa(2010).
12“EMaleadsstudytoputelectricvehiclesonSingaporeroads”(accessed17april2011).
/stories/
singaporelocalnews/view/427272/1/.html
vehicles.Fortheconvenienceofthetest-bedparticipants,chargingstationshavebeendesignedtoautomaticallycollectdataontheEVusers’chargingpatterns.Participantsofthistest-bedschemecanapplyforthetaxincentivescheme,EnhancedTechnologyInnovationanddevelopmentScheme(TIdES-PLuS)whichwaivesallvehicletaxessuchasadditionalregistrationFees(arF),certificateofofEntitlement(coE),roadtaxandexciseduty,forthepurposesofr&dandtest-beddingoftransporttechnologies14.
Injan2011,theTechnischeuniversitatMunchen(TuM)teamedupwiththenanyangTechnologicaluniversity(nTu)tosetuptheTuM-crEaTEcentreofElectromobilitytostudyhowe-mobilitywouldworkinmegacitiesinasia,andthetechnologyinfrastructureneededtosupportthiseffort.ThecentreisaprojectunderthenationalresearchFoundation’s(nrF)crEaTE15programme,forresearchonsustainabilityofelectricvehicle16.
InthenationaluniversityofSingapore(nuS),severalresearchershaveconductedr&donenergystorageforEVapplications.detailsofsuchr&dprojectsaredescribedinappendixB.
EnErgYSToragEForSMarTgrIdaPPLIcaTIonSInSIngaPorE
Smartgridsaredigitally-enhancedversionsoftheconventionalelectricitygrid,andakeyenablerforenergysecurityandreliabilityandintegrationofrenewableenergyresources.ThekeydifferencesinthecharacteristicsofsmartgridsandconventionalgridsaresummarisedinFigure6.Inparticular,unlikesmartgrids,conventionalgridsoperatewithlittleornoenergystorage17.Energystoragetechnologiesplayanimportantroleinfacilitatingtheintegrationandstorageofelectricityfromrenewableenergyresourcesintosmartgrids.Energystorageapplicationsinsmartgridsincludetherampingupandsmoothingofpowersupply,anddistributedenergystorage.
Characteristic
Consumerparticipation
Integratinggenerationandstorage
Marketevolution
Resiliency
ConventionalGrid
Consumersareunder-informedandnon-participativewithpowersystem
Dominatedbycentralgeneration.Manyobstaclesexistforintegratingdistributedenergyresources
Limitedwholesalemarkets,notwellintegrated.Limitedopportunitiesforconsumers
Vulnerabletonaturaldisastersandmaliciousactsofterror
SmartGrid
Informed,involvedandactiveconsumers-demandresponseanddistributedenergyresources
Manydistributedenergyresourceswithplug-and-playconvenience,focusonrenewables
Mature,well-integratedwholesalemarkets,growthofnewelectricitymarketsforconsumers
Resilienttoattacksandnaturaldisasterswithrapidrestorationcapabilities
Figure6:Smartgridversus.conventionalgridcharacteristics
14Pressrelease“LaunchofSingapore’sElectricVehicleTest-bed”,(25jun2011).
15crEaTE-campusforresearchExcellenceandTechnologicalEnterprise.
16“oneelectriccar,twouniversities,100researchers”,TheStraitsTimes,(22jan2011).
17drdennisgross,cleantechMagazine(july/august2010.
TheelectricitygridinSingaporeisconsideredreliableandrobust.networklossesarereportedtobeonlyaround3%.Theauthorsforthe“SmartgridPrimer:aSummary”haverecommendedthatapossibleareaofr&dforSingaporeistheintegrationofdistributedgenerationandrenewablesintothegrid,whichrequiresthesupportofenergystoragetechnologies.See“SmartGridPrimer:ASummary”formoreinformation.
Forlarge-scaleenergystoragepurposes,pumpedhydroelectricityandcaESaretechnologieswhicharetypicallyadopted.However,Singaporeisgeologicallydisadvantagedtoimplementthesetechnologiesduetoourlandconstraint.Thereisnosuitableabovegroundsiteforconventionalpumpedhydroelectricity.Similarly,thedeploymentofcaESfaceschallengeinSingaporeduetoalackofsuitablesites.Tothebestknowledgeoftheauthors,SingaporehasnosealedundergroundairpocketsorabandonedmineswhicharerequiredfortheimplementationofcaES.
Theauthorsrecommendthatmid-scaledistributedenergystoragemaybemoresuitableinSingapore
forthefollowingapplications:
Integrationofdistributedrenewableenergygenerationsuchassolarphotovoltaics;
ancillaryservicessuchasfrequencyregulation,i.e.regulationoftheinstantaneousfrequencyofthealternatecurrentsupplyinSingaporetobestabilizedat50Hz,topreventload-sheddingandblackouts.
applicationofrenewableenergyforoff-gridislandapplication.
Singaporehasplanstoincluderenewableenergyinitsurbanlandscape.18Moreover,thereispotentialformid-scaleenergystoragetoplayaroleinoff-gridislandapplicationinSingapore(e.g.SemakauLandfill,Pulauubin,Lighthouses,etc).
Theauthorsassessthatsuitableenergystoragetechnologiesforrenewableenergygenerationintegrationandoff-gridislandapplicationincludelithium-ionbatteries,flowbatteries,sodiumsulfurbatteriesandadvancedlead-acidbatteries.Forpowerapplicationssuchasfrequencyregulation,ontheotherhand,lithium-ionbatteries,advancedlead-acidbatteriesandflywheelsmaybeapplicable.
EnErgYSToragEForHouSIngandBuILdIngaPPLIcaTIonSInSIngaPorE
Energystoragetechnologiescanbepartoffutureplanstoincorporatehigheramountsofenergyfromrenewableenergysources,suchassolarphotovoltaics.Examplesincludethermalenergystoragewhichcanpotentiallybeappliedformajorenergyusage(e.g.thermalenergystoragesystemforcoolingapplicationinrepublicPolytechnicandresortWorldSentosa)inSingapore,fuelcellinprimaryorbackuppowersystem,andbatterysystemsforstorageofenergyfromrenewablesourcessuchassolarandwindenergy.anexampleofenergystorageapplicationforhousingapplicationcanbeseeninthe“SmartHouses”conceptexploredinjapan.19
18reportoftheEconomicStrategiescommittee(February2010),EconomicStrategiescommittee.availablefrom:
.sg/data/cmsresource/ESc%20Full%20report.pdf
19andyBae,“SmartHouseinjapan”,availablefrom:
/blog/articles/smart-house-in-japan.
(accessed1May2011).
Threeformsofenergystoragearesuitableforhousingandbuildingapplications–(i)batteries;(ii)thermalenergystorage;and(iii)fuelcell.(SeeFigure5.)Theenergystorageforhousingandbuildingindiscussionismainlythermalenergystorage(TES),whichisamaturetechnology.This,however,takesupvaluablelandarea,whichisscarceinSingapore.assuch,applicationsattheconsumersideusuallytargetelectricbillreduction,viaeitherdemandchargesorTime-of-usePricing.
Typically,thesinglebiggestcomponentofutilitycostsistheelectricbillforair-conditioning,whichcanbeashighas50%.20ThedeploymentofaTESsystemisthusanattractiveoptionasitcanhelptostorecoolingenergyduringoff-peakhours(whenutilitycostischeaper)anduseitduringthepeakloadatdaytime.Thishelpsthebuildingownertosaveupto40%ofelectricitybill(e.g.$380,000perannumforrepublicPolytechnic)andprovidesenergysavingsof10-20%dependingonthetypeofTESsystem(e.g.air/Water/PhasechangeMaterials).
PoSSIBLEr&darEaSForSIngaPorE
ThereareseveralfundamentalandappliedresearchprojectsintheareaofenergystoragebeingcarriedoutatinstitutessuchasnuSandnTu.Someoftheresearchprojectsandprogrammescurrentlyunderwayattheseinstitutesaredescribedinappendixc.
IntheSingaporecontext,takingintoaccounttheavailableresearchandr&dinstitutionsandcompetencies,theauthorshaveidentifiedbatteriesasthemaintechnologicalopportunityforenergystorageforthenexttwodecades.Torealisethepotentialofbatterytechnologies,Singapore’sr&deffortsshouldbefocusedonsolutionstothecurrentdrawbacksasfollows:
LeadAcid,Nickel-basedandRedoxFlowbatteries:toxicmaterials;
NickelMetal-hydride(NiMH)batteries:Self-dischargeissues;Performanceisalsosensitivetotemperatureconditions;
Lithium-ionbatteries:chargestoragecapacityneedsleadtohighcostforEVs;Safetyissues;
Sodium-basedbatteries:corrosionduetomoltensulfur;and
Flywheels:LimitedtoStationaryutilityEnergyStorage(SuES)applications;highcosts.
r&dforsomeofthesetypesofbatterieswillrequiremorein-depthresearchtosolvetheproblemsofcharging/discharging/depthofcharge/self-dischargelosses.
20Singapore’sSecondnationalcommunication:undertheunitednationsFrameworkconventiononclimatechange,(november2010)nEa.
Maincontributors:
nationaluniversityofSingapore(nuS)
assistantProfessorPalaniBaLaYa(Leadauthor)ProfessorjimYangLEE
ProfessorLiLu
ProfessorB.V.r.cHoWdarIassociateProfessorStefanadaMSassistantProfessorQingWangProfessorHaogong
associateProfessorHansongcHEngassociateProfessorWenFengLuassistantProfessorPohSengLEE
nanyangTechnologicaluniversity(nTu)
VisitingProfessorrachidYaZaMI(Leadauthor)
EnergyresearchInstitute@nTu(ErI@n)EngkiongkoH(TechnicalWriter)MsEvakPILLaI(TechnicalWriter)
InstituteofMaterialsresearchandEngineering(IMrE)drchaoBinHE
drZhaolinLIudrjianweiXudrkuiYao
drMarkYewchoonTan
Disclaimer,LimitationofLiability
Thisreportrepresentsthepersonalopinionsofthecontributors.Thecontributors,ErI@n,thenationaluniversityofSingapore(nuS),nanyangTechnologicaluniversity(nTu)andInstituteofMaterialsresearchandEngineering(IMrE)excludeanylegalliabilityforanystatementmadeinthereport.Innoeventshallthecontributors,ErI@n,nuS,nTuandIMrEofanytierbeliableincontract,tort,strictliability,warrantyorotherwise,foranyspecial,incidentalorconsequentialdamages,suchas,butnotlimitedto,delay,disruption,lossofproduct,lossofanticipatedprofitsorrevenue,lossofuseofequipmentorsystem,non-operationorincreasedexpenseofoperationofotherequipmentorsystems,costofcapital,orcostofpurchaseorreplacementequipmentsystemsorpower.
Acknowledgement
TheauthorshavebenefitedfromcommentsfromseveralcolleaguesfromnuS,nTuandIMrEaswellasfromthefollowinggovernmentalagencies:a*STar,EdB,EMa,LTa,nccSandnrF.FinallywethankkoHEngkiong(ErI@n)forhistirelesseffortinupdatingandconsolidatingthemanyversionsofthisTechnologyPrimer.
Thisreportwasfirstpublishedinaugust2011.Thecontentsoftheprimerreflecttheviewsoftheauthorsandnottheofficialviewsofthegovernmentagencies.ThepublicationoftheprimershasbeenmadepossiblebynccSandnrF,andreproductionofthecontentissubjecttothewrittenconsentoftheauthors,nccSandnrF
APPENDIXA
MAINENERGySTORAGETECHNOLOGIES
Lead-acidbattery
Lead-acidbatterytechnologyisoneoftheoldestandmostdevelopedbatterytechnologies(SeeFigurea1).Theycomeintwobasicforms:floodedleadacidbatteries,whichareconsideredawellprovenandrobustdesign,andvalveregulatedleadacid(VrLa,or“maintenancefreebatteries”)batteries.Thesebatteriesarealsousedintractionforlifts,golfcarts,uninterruptiblePowerSupply(uPS),minesetc.Lead-acidbatterieshavesomeknowndrawbacksandlimitations.Theyareheavy,givingrisetoverypoorenergy-to-weightandpower-to-weightratiosthatlimittheirapplications.Theleadcontentandthesulfuricacidelectrolytemakethebatteryenvironmentallyunfriendly(althoughapproximately98%21oflead-acidbatteriesarerecycled).Theyhaveshortcycle-lifeandlongrechargetimes.Theycanonlyaccommodateasmallnumberoffull(“deep”)dischargesandcannotbestoredinadischargedconditionwithoutservicelifefailure.
relativelylowself-dischargerateoflead-acidbatteriesmakesthemacommonchoiceforstandbystationaryenergystoragesuchasuninterruptiblepowersupplies(uPS).Lead-acidbatterieshavebeenusedforutilityapplicationssuchaspeakshaving.However,theeconomicsandlife-cyclerequirementsdonotworkoutwellforlead-acidbatteries.TheyarethereforenotthedominantproviderofStationeryutilityEnergyStorage(SuES)applications.TheirpopularityisexpectedtodeclineasadvancesinothertechnologiesoccurwiththeexceptionofStarting,LightingandIgnition(SLI)applications.
Figurea1:Lead-acidcarBattery
accordingtotheEnergyadvisorycouncil(Eac),themarketforLead-acidbatteriesisestimatedtobeapproximately
$3billionandgrowinginexcessof8%peryear.
21ExcludingBrazil,russia,Indiaandchina.
NickelBasedBatteries
Therearetwotypesofnickelbatteries,theolder,nickel-cadmium(NiCd)batteries,andthenewer,nickelmetal-hydride(NiMH)batteries,botharerechargeable.
Nickel-Cadmium(NiCd)Batteriesusenickeloxy-hydroxideandmetalliccadmiumastheelectrodes.Theycomeintwodesigns:sealedandvented.nicdarerelativelyinexpensive,abletosustaindeepdischarge,rechargequickly,andhavealongcyclelife.nicdcanalsoendureveryhighdischargerateswithnodamageorlossofcapacity.Hencetheyarecommonamongpowertools.
However,nicdareextremelyenvironmentallyunfriendlybecauseoftheuseoftoxiccadmium.Theyhaverelativelylowenergydensityandrelativelyhighself-dischargerates,whichrequirerechargeafterrelativelyshortstorageperiods.Thechargingratesareverysensitivetohotandcoldtemperatureconditions.Therearealsoknownmemoryeffectsthatshortenthebatteryshelflife.TheycompareunfavorablyintermsofavailabilityandenergydensitywiththenickelMetalHydride(niMH)andLi-ionbatteries.
Therehavebeenafewdemonstrationsoflarge-scaleSuESapplications,suchasthesysteminstalledbythegoldenValleyElectricassociationInc.(gVEa)inFairbanks,alaska.Thesystemconsistsof13,760cellsandcanprovide40MWofpowerforuptosevenminutes.(SeeFigurea2)However,theinherentdisadvantagesofnicdrelativetootheremergingbatterytechnologiesandenvironmentalconsiderationshavelargelyrelegatedni-cdtothebackburner.Thereislittle,ifany,anticipatedgrowthfornicdinSuESapplications.
Figurea2:goldenValleyElectricassociation(gVEa)locatedinFairbanks,ala,13760SaftSBH920highperformancerechargeablenickel-cadmiumcells22
22
/images/PdFs_articles_whitepaper_appros/appProBESS.pdf
Nickelmetal-hydride(NiMH)batteriesareanotheralkalinenickel-basedbatterytechnologythathasreplacednicdinmanyapplications.niMHbatteriesprovide30to40%moreenergycapacityandpowercapabilitiescomparedtothesamesizenicdcell.niMHisabletomeetthehighpowerrequirementsinhybridelectricvehicles(HEV);andassuchhasbeenthedominantbatterytechnologypoweringtoday’sHEVssuchastheToyotaPrius.niMHbatteriesareconsiderablymoreenvironmentallyfriendlycomparedwithleadacidandnicdbatteries.Theycanbechargedinabout3hours,although,likenicd,chargingratesaresensitivetobothhotandcoldtemperatureconditions.WhileniMHbatteriesarecapableofhighpowerdischarge,consistentuseinhigh-currentconditionscanlimitthebattery’slife.
TheniMH’sself-discharge23rateisquitehigh,upto400%greaterthanthatofalead-airbattery.ThemostsignificantoperationalchallengewithniMHrelatestorechargesafety.ThetemperatureandinternalpressureofaniMHbatterycellrisessignificantlyasitreaches100%stateofcharge.Topreventthermalrunaway,complexcell-monitoringelectronicsandsophisticatedchargingalgorithmsmustbedesignedintothebatterysystem.WithniMHtechnologygainingprominenceintheelectricandhybridelectricvehiclemarketsindustryparticipantsbelievethereareloomingpressuresonnickelsupplies,whichisonesignificantfactorthatmaylimitthetechnologies’abilitytoscale.
Thegeneralsenseamongtheindustryisthatothertechnologiesofferamorefavorableenergydensityandcostprofileforutility-scaleenergystorageapplications.
RedoxFlowBatteries
Zinc-bromineflowbatteryisatypeofhybri
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初一地理開學(xué)湘教版
- 湖北省十堰市城區(qū) 2024-2025學(xué)年七年級上學(xué)期期中考試道德與法治試題(不含答案)
- 一級建造師考試考點積累:建設(shè)項目管理專項制度
- 新人教部編本一級下冊14荷葉圓圓4000002
- 培養(yǎng)學(xué)生創(chuàng)新思維的藝術(shù)課程計劃
- 社區(qū)公共衛(wèi)生建設(shè)的規(guī)劃計劃
- 學(xué)期科普知識普及與學(xué)習(xí)計劃
- 裝飾設(shè)計承攬合同三篇
- 大班情感教育活動的開展計劃
- 加強手術(shù)室管理與人員培訓(xùn)計劃
- 人教版小學(xué)數(shù)學(xué)四年級上冊教材分析
- 國家執(zhí)業(yè)醫(yī)師資格考試題庫(針灸學(xué))
- 茅臺紅酒推銷文案策劃案例
- 五年級上冊小數(shù)四則混合運算練習(xí)100道及答案
- 心衰健康宣教課件
- 2024年廣東省公需課《百縣千鎮(zhèn)萬村高質(zhì)量發(fā)展工程與城鄉(xiāng)區(qū)域協(xié)調(diào)發(fā)展》考試答案
- 鉆孔灌注樁樁工程隱蔽驗收記錄表格及填寫范本
- 人教版四年級上冊數(shù)學(xué)《第三單元角的度量 整理和復(fù)習(xí)》教學(xué)課件
- ERP系統(tǒng)常見物料分類及編碼規(guī)則
- 起重機(jī)吊裝方案.doc
- 安全隱患排查記錄(日周月
評論
0/150
提交評論