自動生成?Python 程序用于 創(chuàng)建 SDTM 數(shù)據(jù)集_第1頁
自動生成?Python 程序用于 創(chuàng)建 SDTM 數(shù)據(jù)集_第2頁
自動生成?Python 程序用于 創(chuàng)建 SDTM 數(shù)據(jù)集_第3頁
自動生成?Python 程序用于 創(chuàng)建 SDTM 數(shù)據(jù)集_第4頁
自動生成?Python 程序用于 創(chuàng)建 SDTM 數(shù)據(jù)集_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PharmaSUGOsaka2023

AutomaticGenerationofPythonProgramsforCreatingSDTMDatasets

FUJITSULIMITED

?2023FujitsuLimited.

PAGE

2

?2023FujitsuLimited.

Disclaimer

Theviewsandopinionsexpressedinthispresentationarethoseoftheauthor(s)anddonotnecessarilyreflecttheofficialpolicyorpositionoftheorganizationwheretheauthorbelongs.

AboutThisPresentation

ThemaintopicofthispresentationisautomaticgenerationofPython

programsforcreatingCDISCSDTMdatasets.

Beforedivingintothemaintopic,thispresentationwillexplain:

WhyPythonisagoodoptionfordatascienceindrugdevelopment

HowprogrammingpracticeischangingwithGenerativeAI

HowDigitalDataFlowisimpactingapproachtodataprocessing

BackgroundandTrends

4 ?2023FujitsuLimited.

PAGE

12

?2023FujitsuLimited.

PopularityofSAS,RandPython

Astudyconductedin2020for1,000datascientistsintheUnitedStatesshowedthatPython

wasthemostpopularlanguageamongSAS,RandPython,inanyindustry.

ItalsoshowsthatPythonismorepopularinyoungergeneration(withlessyearsofexperienceindatascience).

Reference:BurtchWorksLLC"

2020SAS,R,orPythonSurveyResults:WhichTooldoDataScientists&AnalyticsProsPrefer?

"

GenerativeAI

GenerativeAI(morepreciselyLLM:LargeLanguageModel)issignificantlychangingthewayhowprogramsaredeveloped.

CodeGeneration

CodeCompletion

TestCodeGenerationandmore

ChatGPT,themostfamousLLM-basedgenerativeAI,isbuiltwithPythonandbestatgeneratingPythoncodesamongotherlanguages.

AnotherfamousLLM-basedgenerativeAI,Copilot,istrainedonalllanguagesthatappearinpublicrepositories(seethetop50pullrequestsinQ3of2023ontheleft).

AdvancedDataAnalytics

AdvanceddataanalysisisanotherpowerfulfeatureofChatGPTthatallowsuploadingfiles,

writeandexecutePythoncodes,andcreategraphswithinstructionsinnaturallanguage.

DigitalDataFlow(DDF)Overview

DigitalDataFlow(DDF)isaninitiativebyTransCeleratethataimstocreatedigitizedstudy

protocolandautomatecreationofstudyassets.

Studybuildersordigitalprotocolauthoringtools

Centralrepositoryofdigitizedstudyprotocol

Automatedownstreamdocumentsandsystems

CDISCiscollaboratingwithTransCeleratetodevelopastandardmodelforStudyDefinitionsRepositoryaspartoftheirjourneytoachieveend-to-endautomation.

Note:ThecontentinthisslidehasbeencreatedbysummarizingcontentsontheTransCeleratewebsiteattheauthor’sowndiscretion.

DDFAchievesMoreSDTMAutomation

(2)ActivitieswithBCsaremappedtoformswhenadrafteCRFSpeciscreatedfromSDR.

(3)ActivitieswithBCsaremappedtoSDTMdomainswhenadraftSDTMSpeciscreatedfromSDR.

(1)Activities/BCsarepopulatedviaStudyBuilderorreadfromStudyProtocol.

StudyBuilder

Protocol

SDR

eCRFSpec SDTMSpec

BCs

BCs

AutomatedMapping

Generate

SDTM

Datasets

SDTM

BiomedicalConcepts(BC)

(4)SDRknowswhichBCsare

referencedfromwhichforms/domains

DigitalDataFlow

MetadataRepository

DDFandGenerativeAI

Dotheyconflictorcomplementtoeachother?

DigitalDataFlow

Protocol CRFSpec

SDTMSpec

SDTMDatasets

StatisticalAnalysisPlan

MockShells

ADaMSpec ADaMDatasets TLFs StudyReport

CDISCOak–SDTMAutomationinR

Awell-knownexampleofR-basedSDTMautomation

OnlyasAlgorithms

OnlyasSub-Algorithms

Algorithm&Sub-Algorithms

03_AE_AEREL

11_MERGE

01_ASSIGN_NO_CT

07_DATASET_LEVEL

18_REMOVE_DUP

02_ASSIGN_CT

09_IF_THEN_ELSE

19_GROUP_BY

05_HARDCODE_CT

17_WHODRUG_FA

20_NEED_USER_INPUT

06_HARDCODE_NO_CT

13_RELREC

08_NOTSUBMITTED

14_RELREC_CONDITION

15_MULTIPLE_RESPONSES

21_NONCRF_LAB

22_NONCRF_PKC

23_PAIRED_VARS

Upto22ReusableAlgorithms

Reference:F.Hoffmann-LaRocheAG"

OAKGarden-SDTMAutomationTheflourishingDataTransformationEngine

"

FujitsutsClinicalforSDTMAutomation

CRFandeDTSpecs

SDTMSpec

StandardsandTerminologies

TrialDesign

SimilarcomponentsandprocessestoOAKGarden,butmorevarietyofmethods.

MetadataRepository

TransformationEngine

RunsonOracleand.NET

AnnotatedCRF

BiomedicalConcepts

SDTM

Datasets

Transformation

Engine

SDTMSpec

(Executable)

Define-XML

TopicMethods

assignTopiccopycopyDesigncopyUniqueextrtjoinUniquelookupConcept

lookupConceptNormalizedlookupDomainREGEXn1mapTopic

se

sv

Non-TopicMethods

blflcalccoeval

commentconcatconcatDateconvertToStdcopycopyDesigncopyIfcopyToSUPP

…andmore

55Methodsand286UseCases**

**:Pre-configuredmethodcalls

AddingPythonImplementationtotsClinical

The55methodsarebeingimplementedinPython.

MetadataRepository

TransformationEngine

RunsonOracleand.NET

AnnotatedCRF

TransformationinPython

BiomedicalConcepts

SDTM

Datasets

Transformation

Engine

SDTMSpec

(Executable)

Define-XML

CRFandeDTSpecs

SDTMSpec

StandardsandTerminologies

TrialDesign

Pythoncurrentlyimplementedforreal-timemappingreviewasSDTMspecisedited.

Summary

GenerativeAIismultipurpose,andthusyourideasmattertomakeitvaluable.

PythonsitsinauniquepositionintheAIera.

DigitalDataFlowisbuiltonCDISCstandardsandhasgoodfamiliaritywithdataprocessing.

Afterall,therearemanychancesofautomationinyourjobwiththe

riseofLLM-basedgenerativeAIandDigitalDataFlow.

Exercise

CRFandeDTSpecs

SDTMSpec

StandardsandTerminologies

TrialDesign

Whichpartoftheprocessbe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論