版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省樂山市市中學區(qū)中考適應性考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發(fā),沿A→B→C的方向運動,到達點C時停止.設點M運動的路程為x,MN2=y,則y關于x的函數圖象大致為A.B.C.D.2.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.3.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.4.舌尖上的浪費讓人觸目驚心,據統(tǒng)計中國每年浪費的食物總量折合糧食約499.5億千克,這個數用科學記數法應表示為()A.4.995×1011 B.49.95×1010C.0.4995×1011 D.4.995×10105.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b36.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內 B.點C在⊙A內,點B在⊙A外C.點B在⊙A內,點C在⊙A外 D.點B、點C都在⊙A外7.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或28.函數與在同一坐標系中的大致圖象是()A、B、C、D、9.2017年,全國參加漢語考試的人數約為6500000,將6500000用科學記數法表示為()A.6.5×105B.6.5×106C.6.5×107D.65×10510.的相反數是()A.6 B.-6 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知同一個反比例函數圖象上的兩點、,若,且,則這個反比例函數的解析式為______.12.分解因式:a2b?8ab+16b=_____.13.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.14.若分式的值為正數,則x的取值范圍_____.15.方程的兩個根為、,則的值等于______.16.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數為.
三、解答題(共8題,共72分)17.(8分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.(1)求與之間的函數關系式;(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?(3)該網店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.18.(8分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?19.(8分)在“弘揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調查了部分學生,結果統(tǒng)計如下:(1)根據題中信息補全條形統(tǒng)計圖.(2)所抽取的學生參加其中一項活動的眾數是.(3)學?,F有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?20.(8分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.21.(8分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.22.(10分)2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經貿合作協議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?23.(12分)如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.24.如圖①,二次函數的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:分析y隨x的變化而變化的趨勢,應用排它法求解,而不一定要通過求解析式來解決:∵等邊三角形ABC的邊長為3,N為AC的三等分點,∴AN=1?!喈旤cM位于點A處時,x=0,y=1。①當動點M從A點出發(fā)到AM=的過程中,y隨x的增大而減小,故排除D;②當動點M到達C點時,x=6,y=3﹣1=2,即此時y的值與點M在點A處時的值不相等,故排除A、C。故選B。2、B【解析】根據垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數的定義是解題的關鍵.3、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大?。键c:三視圖.4、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】將499.5億用科學記數法表示為:4.995×1.
故選D.【點睛】此題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、B【解析】
由整數指數冪和分式的運算的法則計算可得答案.【詳解】A項,根據單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據“同底數冪相除,底數不變,指數相減”可得:a6÷a2=a4,故B項正確;C項,根據分式的加法法則可得:,故C項錯誤;D項,根據“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數冪的乘法:(m、n都是正整數)(2)冪的乘方:(m、n都是正整數)(3)積的乘方:(n是正整數)(4)同底數冪的除法:(a≠0,m、n都是正整數,且m>n)(5)零次冪:(a≠0)(6)負整數次冪:(a≠0,p是正整數).6、D【解析】
先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關系判斷B、C與圓的關系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關系,解題的關鍵是熟練的掌握點與圓的位置關系.7、C【解析】
過B作直徑,連接AC交AO于E,如圖①,根據已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據勾股定理得到結論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確的作出圖形是解題的關鍵.8、D.【解析】試題分析:根據一次函數和反比例函數的性質,分k>0和k<0兩種情況討論:當k<0時,一次函數圖象過二、四、三象限,反比例函數中,-k>0,圖象分布在一、三象限;當k>0時,一次函數過一、三、四象限,反比例函數中,-k<0,圖象分布在二、四象限.故選D.考點:一次函數和反比例函數的圖象.9、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】將6500000用科學記數法表示為:6.5×106.故答案選B.【點睛】本題考查了科學計數法,解題的關鍵是熟練的掌握科學計數法的表示形式.10、D【解析】
根據相反數的定義解答即可.【詳解】根據相反數的定義有:的相反數是.故選D.【點睛】本題考查了相反數的意義,一個數的相反數就是在這個數前面添上“﹣”號;一個正數的相反數是負數,一個負數的相反數是正數,1的相反數是1.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=【解析】解:設這個反比例函數的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數圖象上點的坐標特征,所有在反比例函數上的點的橫縱坐標的積應等于比例系數.同時考查了式子的變形.12、b(a﹣4)1【解析】
先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關鍵.13、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).14、x>1【解析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.15、1.【解析】
根據一元二次方程根與系數的關系求解即可.【詳解】解:根據題意得,,所以===1.故答案為1.【點睛】本題考查了根與系數的關系:若、是一元二次方程(a≠0)的兩根時,,.16、65°【解析】
根據已知條件中的作圖步驟知,AG是∠CAB的平分線,根據角平分線的性質解答即可.【詳解】根據已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個銳角互余);
故答案是:65°.三、解答題(共8題,共72分)17、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】
(1)可用待定系數法來確定y與x之間的函數關系式;(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;(3)首先得出w與x的函數關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數的應用、一次函數的應用和一元二次方程的應用,利用函數增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數模型是解答本題的重點和難點.18、(1)該校對50名學生進行了抽樣調查;(2)最喜歡足球活動的人占被調查人數的20%;(3)全校學生中最喜歡籃球活動的人數約為720人.【解析】
(1)根據條形統(tǒng)計圖,求個部分數量的和即可;(2)根據部分除以總體求得百分比;(3)根據扇形統(tǒng)計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調查人數的20%.(3)全校學生人數:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數約為2000×=720(人).【點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚的表示出每個項目的數據;扇形統(tǒng)計圖中各部分占總體的百分比之和為1,直接反應部分占全體的百分比的大小.19、(1)見解析(2)A-國學誦讀(3)360人【解析】
(1)根據統(tǒng)計圖中C的人數和所占百分比可求出被調查的總人數,進而求出活動B和D人數,故可補全條形統(tǒng)計圖;(2)由條形統(tǒng)計圖知眾數為“A-國學誦讀”(3)先求出參加活動A的占比,再乘以全校人數即可.【詳解】(1)由題意可得,被調查的總人數為12÷20%=60,希望參加活動B的人數為60×15%=9,希望參加活動D的人數為60-27-9-12=12,故補全條形統(tǒng)計圖如下:(2)由條形統(tǒng)計圖知眾數為“A-國學誦讀”;(3)由題意得全校學生希望參加活動A的人數為800×=360(人)【點睛】此題主要考查統(tǒng)計圖的應用,解題的關鍵是根據題意求出調查的總人數再進行求解.20、(1)證明見解析;(2)AC=4.【解析】
(1)連接,根據切線的性質得到,根據垂直的定義得到,得到,然后根據圓周角定理證明即可;(2)設的半徑為,根據余弦的定義、勾股定理計算即可.【詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【點睛】本題考查了切線的性質、圓周角定理以及解直角三角形,掌握切線的性質定理、圓周角定理、余弦的定義是解題的關鍵.21、證明見解析【解析】
根據垂直的定義和直角三角形的全等判定,再利用全等三角形的性質解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【點睛】本題考查了全等三角形的判定及性質,根據垂直的定義和直角三角形的全等判定是解題的關鍵.22、(1)甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)至少銷售甲種商品1萬件.【解析】
(1)可設甲種商品的銷售單價x元,乙種商品的銷售單價y元,根據等量關系:①1件甲種商品與3件乙種商品的銷售收入相同,②3件甲種商品比1件乙種商品的銷售收入多1500元,列出方程組求解即可;(1)可設銷售甲種商品a萬件,根據甲、乙兩種商品的銷售總收入不低于5400萬元,列出不等式求解即可.【詳解】(1)設甲種商品的銷售單價x元,乙種商品的銷售單價y元,依題意有:,解得.答:甲種商品的銷售單價900元,乙種商品的銷售單價600元;(1)設銷售甲種商品a萬件,依題意有:900a+600(8﹣a)≥5400,解得:a≥1.答:至少銷售甲種商品1萬件.【點睛】本題考查了一元一次不等式及二元一次方程組的應用,解決本題的關鍵是讀懂題意,找到符合題意的不等關系式及所求量的等量關系.23、(1)y=﹣38x2+34x+3;D(1,278【解析】
(1)設拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;(2)畫圖,先根據點B和C的坐標確定直線BC的解析式,設P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設拋物線的解析式為y=a(x+2)(x﹣4),將點C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當x=1時,y=﹣34+3=9∴E(1,94∴DE=278-94=9設P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四邊形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34解得:m1=1(舍),m2=3,∴P(3,158【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求一次函數和二次函數的解析式,利用方程思想列等式求點的坐標,難度適中.24、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園2022秋季中班級工作計劃
- 初中學習計劃
- 多功能整粒機行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 中國姜黃行業(yè)市場發(fā)展現狀及投資前景展望報告
- 2024-2027年中國國資云行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃報告
- 客服的個人工作計劃
- 減災工作計劃匯編10篇
- 財務工作年度工作計劃
- 重癥實習報告600字5篇
- 生產部述職報告怎么寫5篇
- 新教科版小學1-6年級科學需做實驗目錄
- 2024過敏性休克搶救指南(2024)課件干貨分享
- 【發(fā)動機曲軸數控加工工藝過程卡片的設計7800字(論文)】
- 2024年貴州貴陽市貴安新區(qū)產業(yè)發(fā)展控股集團有限公司招聘筆試參考題庫含答案解析
- 汕頭市中小學教學研究中心招聘專職教研員考試試題及答案
- 數字孿生應用技術基礎知識考試題庫(600題)
- 美國RAZ分級讀物目錄整理
- 地方課程六年級上冊
- 中科院大連化物所模板PPT課件
- YOX液力偶合器使用說明書
- 優(yōu)秀團支部申報表
評論
0/150
提交評論