北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷含解析_第1頁
北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷含解析_第2頁
北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷含解析_第3頁
北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷含解析_第4頁
北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京延慶縣聯(lián)考2024屆中考數(shù)學(xué)押題卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標(biāo)為2,當(dāng)時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>22.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.43.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.4.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE5.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元6.下面說法正確的個數(shù)有()①如果三角形三個內(nèi)角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內(nèi)角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內(nèi)角等于另兩個內(nèi)角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個7.如圖,矩形OABC有兩邊在坐標(biāo)軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.88.某班體育委員對本班學(xué)生一周鍛煉(單位:小時)進(jìn)行了統(tǒng)計,繪制了如圖所示的折線統(tǒng)計圖,則該班這些學(xué)生一周鍛煉時間的中位數(shù)是()A.10 B.11 C.12 D.139.某校九年級(1)班全體學(xué)生實驗考試的成績統(tǒng)計如下表:成績(分)24252627282930人數(shù)(人)2566876根據(jù)上表中的信息判斷,下列結(jié)論中錯誤的是()A.該班一共有40名同學(xué)B.該班考試成績的眾數(shù)是28分C.該班考試成績的中位數(shù)是28分D.該班考試成績的平均數(shù)是28分10.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.10二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.12.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機(jī)地撒一把豆子,豆子落在區(qū)域的可能性最大(填A(yù)或B或C).13.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結(jié)DC.如果AD=2,BD=6,那么△ADC的周長為.14.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當(dāng)MN=1時,PM的長是_____.15.在平面直角坐標(biāo)系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.16.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側(cè)面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.三、解答題(共8題,共72分)17.(8分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標(biāo)為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設(shè)點P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當(dāng)∠PBA+∠CBO=45°時.求△PBA的面積.18.(8分)某小區(qū)為了安全起見,決定將小區(qū)內(nèi)的滑滑板的傾斜角由45°調(diào)為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調(diào)整后滑滑板會加長多少米?(結(jié)果精確到0.01米,參考數(shù)據(jù):,,)19.(8分)如圖,大樓AB的高為16m,遠(yuǎn)處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)20.(8分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷每人必選且只選一種,在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補(bǔ)充完整;該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名.21.(8分)解不等式組,并寫出其所有的整數(shù)解.22.(10分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.23.(12分)八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計同學(xué)們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:(1)共有名同學(xué)參與問卷調(diào)查;(2)補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學(xué)生1500人,請估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為多少.24.先化簡÷(x-),然后從-<x<的范圍內(nèi)選取一個合適的正整數(shù)作為x的值代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標(biāo),再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點對稱,

∴A、B兩點關(guān)于原點對稱,

∵點A的橫坐標(biāo)為1,∴點B的橫坐標(biāo)為-1,

∵由函數(shù)圖象可知,當(dāng)-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,

∴當(dāng)y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關(guān)鍵.2、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.3、C【解析】

三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標(biāo)有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.4、B【解析】

先證明四邊形DBCE為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【點睛】本題考查了平行四邊形的性質(zhì)與判定,矩形的判定等,熟練掌握相關(guān)的判定定理與性質(zhì)定理是解題的關(guān)鍵.5、C【解析】

根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴(kuò)大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴(kuò)大為原來的3倍,則面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的面積=9×6=54m2,∴擴(kuò)大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.6、C【解析】試題分析:①∵三角形三個內(nèi)角的比是1:2:3,∴設(shè)三角形的三個內(nèi)角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內(nèi)角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內(nèi)角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設(shè)∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,三角形的一個內(nèi)角等于另兩個內(nèi)角之差,∴三角形一個內(nèi)角也等于另外兩個內(nèi)角的和,∴這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補(bǔ),∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,又一個內(nèi)角也等于另外兩個內(nèi)角的和,由此可知這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補(bǔ),∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內(nèi)角和定理;2.三角形的外角性質(zhì).7、B【解析】

根據(jù)反比例函數(shù)的圖象和性質(zhì)結(jié)合矩形和三角形面積解答.【詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【點睛】此題重點考查學(xué)生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關(guān)鍵.8、B【解析】

根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得本班的學(xué)生數(shù),從而可以求得該班這些學(xué)生一周鍛煉時間的中位數(shù),本題得以解決.【詳解】由統(tǒng)計圖可得,本班學(xué)生有:6+9+10+8+7=40(人),該班這些學(xué)生一周鍛煉時間的中位數(shù)是:11,故選B.【點睛】本題考查折線統(tǒng)計圖、中位數(shù),解答本題的關(guān)鍵是明確題意,會求一組數(shù)據(jù)的中位數(shù).9、D【解析】

直接利用眾數(shù)、中位數(shù)、平均數(shù)的求法分別分析得出答案.【詳解】解:A、該班一共有2+5+6+6+8+7+6=40名同學(xué),故此選項正確,不合題意;B、該班考試成績的眾數(shù)是28分,此選項正確,不合題意;C、該班考試成績的中位數(shù)是:第20和21個數(shù)據(jù)的平均數(shù),為28分,此選項正確,不合題意;D、該班考試成績的平均數(shù)是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故選項D錯誤,符合題意.故選D.【點睛】此題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.10、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】

先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點睛】考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運用三角形外角的性質(zhì)(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和).12、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率13、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質(zhì);2.等腰三角形的判定與性質(zhì).14、【解析】

設(shè)PM=x,根據(jù)黃金分割的概念列出比例式,計算即可.【詳解】設(shè)PM=x,則PN=1-x,

由得,,

化簡得:x2+x-1=0,

解得:x1=,x2=(負(fù)值舍去),

所以PM的長為.【點睛】本題考查的是黃金分割的概念和性質(zhì),把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.15、答案不唯一【解析】分析:把y改寫成頂點式,進(jìn)而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉(zhuǎn)化為頂點的平移問題.16、【解析】

要求絲線的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.

∵圓柱底面的周長為4dm,圓柱高為2dm,

∴AB=2dm,BC=BC′=2dm,

∴AC2=22+22=8,

∴AC=2dm.

∴這圈金屬絲的周長最小為2AC=4dm.

故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側(cè)面展開成矩形,“化曲面為平面”是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解析】

(3)通過一次函數(shù)解析式確定A、B兩點坐標(biāo),直接利用待定系數(shù)法求解即可得到b,c的值,令y=4便可得C點坐標(biāo).

(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設(shè)點P坐標(biāo)為(m,-m2+m+2),Q點坐標(biāo)(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關(guān)系,再次利用即可求解.

(3)求得P點坐標(biāo),利用圖形割補(bǔ)法求解即可.【詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設(shè)P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y(tǒng).∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設(shè)直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當(dāng)x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥cy軸于點H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【點睛】本題考查了函數(shù)圖象與坐標(biāo)軸交點坐標(biāo)的確定,以及利用待定系數(shù)法求解拋物線解析式常數(shù)的方法,再者考查了利用數(shù)形結(jié)合的思想將圖形線段長度的比化為坐標(biāo)軸上點之間的線段長度比的思維能力.還考查了運用圖形割補(bǔ)法求解坐標(biāo)系內(nèi)圖形的面積的方法.18、改善后滑板會加長1.1米.【解析】

在Rt△ABC中,根據(jù)AB=4米,∠ABC=45°,求出AC的長度,然后在Rt△ADC中,解直角三角形求AD的長度,用AD-AB即可求出滑板加長的長度.【詳解】解:在Rt△ABC中,AC=AB?sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板會加長1.1米.【點睛】本題主要考查了解直角三角形的應(yīng)用,利用這兩個直角三角形公共的直角邊解直角三角形是解答本題的關(guān)鍵.19、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.20、(1)100,108°;(2)答案見解析;(3)600人.【解析】

(1)先利用QQ計算出宗人數(shù),再用百分比計算度數(shù);(2)按照扇形圖補(bǔ)充條形圖;(3)利用微信溝通所占百分比計算總?cè)藬?shù).【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,∴此次共抽查了:20÷20%=100人.喜歡用QQ溝通所占比例為:,∴QQ的扇形圓心角的度數(shù)為:360°×=108°.(2)喜歡用短信的人數(shù)為:100×5%=5人喜歡用微信的人數(shù)為:100-20-5-30-5=40補(bǔ)充圖形,如圖所示:(3)喜歡用微信溝通所占百分比為:×100%=40%.∴該校共有1500名學(xué)生,估計該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有:1500×40%=600人.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論