內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題含解析_第1頁
內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題含解析_第2頁
內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題含解析_第3頁
內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題含解析_第4頁
內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古自治區(qū)赤峰市翁牛特旗烏敦套海中學2023-2024學年中考三模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.等腰三角形兩邊長分別是2cm和5cm,則這個三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm2.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)3.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.4.估計的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間5.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.6.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.7.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-48.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.9.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.2510.已知關(guān)于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.12.如果某數(shù)的一個平方根是﹣5,那么這個數(shù)是_____.13.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.14.分解因式:________.15.為迎接文明城市的驗收工作,某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內(nèi)某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是_____.16.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應(yīng)點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.17.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.三、解答題(共7小題,滿分69分)18.(10分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;(3)PA、PB、PC滿足的等量關(guān)系為.19.(5分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)20.(8分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.21.(10分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據(jù)商場的活動方式:若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個,請求出這種籃球的標價;學校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案)22.(10分)鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.據(jù)調(diào)查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于多少元?在實際銷售時,由于天氣和運輸?shù)脑?,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.23.(12分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結(jié)果即可).24.(14分)在等邊△ABC外側(cè)作直線AM,點C關(guān)于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】當腰長是2cm時,因為2+2<5,不符合三角形的三邊關(guān)系,排除;當腰長是5cm時,因為5+5>2,符合三角形三邊關(guān)系,此時周長是12cm.故選B.2、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).3、C【解析】

結(jié)合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.4、C【解析】

根據(jù),可以估算出位于哪兩個整數(shù)之間,從而可以解答本題.【詳解】解:∵即

故選:C.【點睛】本題考查估算無理數(shù)的大小,解題的關(guān)鍵是明確估算無理數(shù)大小的方法.5、A【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.6、A【解析】

此題考查了概率公式的應(yīng)用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,故本題選A.7、D【解析】

根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大小.8、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.9、C【解析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.10、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.12、25【解析】

利用平方根定義即可求出這個數(shù).【詳解】設(shè)這個數(shù)是x(x≥0),所以x=(-5)2=25.【點睛】本題解題的關(guān)鍵是掌握平方根的定義.13、1【解析】

根據(jù)弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關(guān)鍵是掌握弧長公式:l=.14、(a+1)(a-1)【解析】

根據(jù)平方差公式分解即可.【詳解】(a+1)(a-1).故答案為:(a+1)(a-1).【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.15、【解析】

將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.【詳解】解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個組恰好抽到同一個小區(qū)的結(jié)果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為=.故答案為:.【點睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.16、或1【解析】

圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!17、5.【解析】

試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.三、解答題(共7小題,滿分69分)18、(1)150,(1)證明見解析(3)【解析】

(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉(zhuǎn)110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉(zhuǎn)變換的性質(zhì)、勾股定理和余弦、正弦的關(guān)系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉(zhuǎn)α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用,掌握等邊三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、靈活運用類比思想是解題的關(guān)鍵.19、旗桿AB的高度為6.4米.【解析】分析:(1)根據(jù)坡度i與坡角α之間的關(guān)系為:i=tanα進行計算;(2)根據(jù)余弦的概念求出CD,根據(jù)正切的概念求出AG、BG,計算即可.本題解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,則DF=DC+CF=10(米),∵四邊形GDFE為矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),則AB=AG?BG=10?3.6=6.4(米).答:旗桿AB的高度為6.4米。20、,【解析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除以一個數(shù)等于乘以這個數(shù)的倒數(shù)將除法運算化為乘法運算,約分得到最簡結(jié)果,利用-1的偶次冪為1及特殊角的三角函數(shù)值求出a的值,代入計算即可求出值.解:原式=,當,原式=.“點睛”此題考查了分式的化簡求值,分式的加減運算關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母;分式的乘除運算關(guān)鍵是約分,約分的關(guān)鍵是找公因式.21、(1)這種籃球的標價為每個50元;(2)見解析【解析】

(1)設(shè)這種籃球的標價為每個x元,根據(jù)題意可知在B超市可買籃球個,在A超市可買籃球個,根據(jù)在B商場比在A商場多買5個列方程進行求解即可;(2)分情況,單獨在A超市買100個、單獨在B超市買100個、兩家超市共買100個進行討論即可得.【詳解】(1)設(shè)這種籃球的標價為每個x元,依題意,得,解得:x=50,經(jīng)檢驗:x=50是原方程的解,且符合題意,答:這種籃球的標價為每個50元;(2)購買100個籃球,最少的費用為3850元,單獨在A超市一次買100個,則需要費用:100×50×0.9-300=4200元,在A超市分兩次購買,每次各買50個,則需要費用:2(50×50×0.9-300)=3900元,單獨在B超市購買:100×50×0.8=4000元,在A、B兩個超市共買100個,根據(jù)A超市的方案可知在A超市一次購買:=44,即購買45個時花費最小,為45×50×0.9-300=1725元,兩次購買,每次各買45個,需要1725×2=3450元,其余10個在B超市購買,需要10×50×0.8=400元,這樣一共需要3450+400=3850元,綜上可知最少費用的購買方案:在A超市分兩次購買,每次購買45個籃球,費用共為3450元;在B超市購買10個,費用400元,兩超市購買100個籃球總費用3850元.【點睛】本題考查了分式方程的應(yīng)用,弄清題意,找準等量關(guān)系列出方程是解題的關(guān)鍵.22、(1)若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于元;(2)的值為.【解析】

(1)設(shè)每盒售價應(yīng)為x元,根據(jù)月銷量=980-30×超出14元的部分結(jié)合月銷量不低于800盒,即可得出關(guān)于x的一元一次不等式,解之取其最大值即可得出結(jié)論;

(2)根據(jù)總利潤=每盒利潤×銷售數(shù)量,即可得出關(guān)于m的一元二次方程,解之取其正值即可得出結(jié)論.【詳解】解:設(shè)每盒售價元.依題意得:解得:答:若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于元依題意:令:化簡:解得:(舍),答:的值為.【點睛】考查一元二次方程的應(yīng)用,一元一次不等式的應(yīng)用,讀懂題目,找出題目中的等量關(guān)系或不等關(guān)系是解題的關(guān)鍵.23、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設(shè)OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點B'落在A點右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點B'落在A點左邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)綜上所述:B'(1+,0),(1﹣,0)【點睛】本題結(jié)合翻折綜合考查了三角形相似和特殊角的三角函數(shù),第3問中理解B’點的兩種情況是解題關(guān)鍵.24、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論