遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷含解析_第1頁
遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷含解析_第2頁
遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷含解析_第3頁
遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷含解析_第4頁
遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省大連市高新園區(qū)2023-2024學年中考猜題數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m2.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)3.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關系的圖象是()A. B.C. D.4.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y25.在一次中學生田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數(shù)232341則這些運動員成績的中位數(shù)、眾數(shù)分別為A.、 B.、 C.、 D.、6.下列運算中,計算結果正確的是()A.a2?a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a27.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉90°,再向右平移1個單位長度8.下列說法中,錯誤的是()A.兩個全等三角形一定是相似形B.兩個等腰三角形一定相似C.兩個等邊三角形一定相似D.兩個等腰直角三角形一定相似9.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊10.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.12.如圖所示,數(shù)軸上點A所表示的數(shù)為a,則a的值是____.13.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.14.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則ba=_____.15.2017年7月27日上映的國產電影《戰(zhàn)狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數(shù)法表示為_____元.16.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.17.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=的圖象在第一象限的分支過AB的中點D交OB于點E,連接EC,若△OEC的面積為12,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.19.(5分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉,三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設AG=x,GF=y,求Y關于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.20.(8分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.21.(10分)某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數(shù)量的同學”.請指出哪位同學的調查方式最合理.類別頻數(shù)(人數(shù))頻率武術類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數(shù)是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.22.(10分)如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22o時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面的夾角是45o時,教學樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學樓AB的高度;學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結果保留整數(shù)).23.(12分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.24.(14分)清朝數(shù)學家梅文鼎的《方程論》中有這樣一題:山田三畝,場地六畝,共折實田四畝七分;又山田五畝,場地三畝,共折實田五畝五分,問每畝山田折實田多少,每畝場地折實田多少?譯文為:若有山田3畝,場地6畝,其產糧相當于實田4.7畝;若有山田5畝,場地3畝,其產糧相當于實田5.5畝,問每畝山田和每畝場地產糧各相當于實田多少畝?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.2、B【解析】

由矩形的性質可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【詳解】解:∵四邊形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y軸,AD∥BC∥x軸

∴點D坐標為(5,4)

故選B.【點睛】本題考查了矩形的性質,坐標與圖形性質,關鍵是熟練掌握這些性質.3、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關系的圖象是選項D中的圖象.故選D.4、D【解析】試題分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內,y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數(shù)的性質.5、C【解析】

根據(jù)中位數(shù)和眾數(shù)的概念進行求解.【詳解】解:將數(shù)據(jù)從小到大排列為:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80眾數(shù)為:1.75;中位數(shù)為:1.1.故選C.【點睛】本題考查1.中位數(shù);2.眾數(shù),理解概念是解題關鍵.6、C【解析】

根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相減;同底數(shù)冪相除,底數(shù)不變指數(shù)相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法,熟練掌握運算法則是解題的關鍵.7、C【解析】

Rt△ABC通過變換得到Rt△ODE,應先旋轉然后平移即可【詳解】∵Rt△ABC經過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉90°,再向下平移3個單位長度,即可得到△DOE;或將△ABC繞點O順時針旋轉90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉和平移的知識,解題的關鍵在于利用旋轉和平移的概念和性質求坐標的變化8、B【解析】

根據(jù)相似圖形的定義,結合選項中提到的圖形,對選項一一分析,選出正確答案.【詳解】解:A、兩個全等的三角形一定相似,正確;B、兩個等腰三角形一定相似,錯誤,等腰三角形的形狀不一定相同;C、兩個等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【點睛】本題考查的是相似形的定義,聯(lián)系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯誤的,一定要看清楚題.9、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結合a、b、c間的關系即可求出a、b、c的值,由此即可得出結論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.10、B【解析】

根據(jù)拋物線圖象性質確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關系,代入②,不等式kx≤ax2+bx的解集可以轉化為函數(shù)圖象的高低關系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側,則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).12、【解析】

根據(jù)數(shù)軸上點的特點和相關線段的長,利用勾股定理求出斜邊的長,即知表示0的點和A之間的線段的長,進而可推出A的坐標.【詳解】∵直角三角形的兩直角邊為1,2,∴斜邊長為,那么a的值是:﹣.故答案為.【點睛】此題主要考查了實數(shù)與數(shù)軸之間的對應關系,其中主要利用了:已知兩點間的距離,求較大的數(shù),就用較小的數(shù)加上兩點間的距離.13、1【解析】

∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.14、1【解析】

根據(jù)已知a<<b,結合a、b是兩個連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據(jù)無理數(shù)的范圍確定兩個有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個整數(shù),再結合已知條件即可確定a、b的值,15、5.68×109【解析】試題解析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).56.8億故答案為16、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.17、12.【解析】

設AD=a,則AB=OC=2a,根據(jù)點D在反比例函數(shù)y=的圖象上,可得D點的坐標為(a,),所以OA=;過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,已知△OEC的面積為12,OC=2a,根據(jù)三角形的面積公式求得EN=,即可求得EM=;設ON=x,則NC=BM=2a-x,證明△BME∽△ONE,根據(jù)相似三角形的性質求得x=,即可得點E的坐標為(,),根據(jù)點E在在反比例函數(shù)y=的圖象上,可得·=k,解方程求得k值即可.【詳解】設AD=a,則AB=OC=2a,∵點D在反比例函數(shù)y=的圖象上,∴D(a,),∴OA=,過點E作EN⊥OC于點N,交AB于點M,則OA=MN=,∵△OEC的面積為12,OC=2a,∴EN=,∴EM=MN-EN=-=;設ON=x,則NC=BM=2a-x,∵AB∥OC,∴△BME∽△ONE,∴,即,解得x=,∴E(,),∵點E在在反比例函數(shù)y=的圖象上,∴·=k,解得k=,∵k>0,∴k=12.故答案為:12.【點睛】本題是反比例函數(shù)與幾何的綜合題,求得點E的坐標為(,)是解決問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)4.8.【解析】

(1)連結OE,根據(jù)等腰三角形的性質可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質可得EF⊥OE,由此即可證得EF⊥AB;(2)連結BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點睛】本題考查了切線的性質定理、圓周角定理、等腰三角形的性質與判定、勾股定理及直角三角形的兩種面積求法等知識點,熟練運算這些知識是解決問題的關鍵.19、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】

(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結論;

(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結論;

(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;

②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當CF=4時,即:=4,∴x=3,(0≤x≤3),即:y關于x的函數(shù)表達式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴,∴,∴BG=2,∴AG=AB﹣BG=2,即:當△AGQ與△CEP相似,線段AG的長為2或4﹣.【點睛】本題考核知識點:相似三角形綜合.解題關鍵點:熟記相似三角形的判定和性質.20、;.【解析】

(1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.【點睛】二次函數(shù)的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉化成兩個三角形.21、(1)見解析;(2)①a=100,b=0.15;②144°;③140人.【解析】

(1)采用隨機調查的方式比較合理,隨機調查的關鍵是調查的隨機性,這樣才合理;

(2)①用喜歡書畫類的頻數(shù)除以喜歡書畫類的頻率即可求得a值,用喜歡棋牌類的人數(shù)除以總人數(shù)即可求得b值.②求得器樂類的頻

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論