福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷含解析_第1頁
福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷含解析_第2頁
福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷含解析_第3頁
福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷含解析_第4頁
福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

福建省郊尾、楓江、蔡襄教研小片區(qū)2024年中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標系中,把直線y=x向左平移一個單位長度后,所得直線的解析式為()A.y=x+1B.y=x-1C.y=xD.y=x-22.設x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或53.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.44.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)5.某市2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,由于受到國際金融危機的影響,預計2018比2017年增長7%,若這兩年GDP年平均增長率為%,則%滿足的關系是()A. B.C. D.6.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.7.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm8.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°9.如圖,矩形ABCD的邊AB=1,BE平分∠ABC,交AD于點E,若點E是AD的中點,以點B為圓心,BE長為半徑畫弧,交BC于點F,則圖中陰影部分的面積是()A.2- B. C.2- D.10.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-311.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=57012.對于實數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.56二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡:=____.14.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.15.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.16.若,,則的值為________.17.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.18.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,M、N為山兩側(cè)的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.20.(6分)廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關系式;在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?21.(6分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.22.(8分)某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.23.(8分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個?。僮鞑襟E作法由操作步驟推斷(僅選取部分結(jié)論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據(jù)是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構(gòu)造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構(gòu)造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).24.(10分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?25.(10分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.求證:△ACE≌△BCD;若AD=5,BD=12,求DE的長.26.(12分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結(jié)論).27.(12分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】向左平移一個單位長度后解析式為:y=x+1.故選A.點睛:掌握一次函數(shù)的平移.2、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.3、C【解析】

設BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關于x的方程,解方程即可求解.【詳解】設BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質(zhì),勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關鍵.4、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉(zhuǎn)的性質(zhì)得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉(zhuǎn),得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時,注意等邊三角形三線合一的性質(zhì).5、D【解析】分析:根據(jù)增長率為12%,7%,可表示出2017年的國內(nèi)生產(chǎn)總值,2018年的國內(nèi)生產(chǎn)總值;求2年的增長率,可用2016年的國內(nèi)生產(chǎn)總值表示出2018年的國內(nèi)生產(chǎn)總值,讓2018年的國內(nèi)生產(chǎn)總值相等即可求得所列方程.詳解:設2016年的國內(nèi)生產(chǎn)總值為1,∵2017年國內(nèi)生產(chǎn)總值(GDP)比2016年增長了12%,∴2017年的國內(nèi)生產(chǎn)總值為1+12%;∵2018年比2017年增長7%,∴2018年的國內(nèi)生產(chǎn)總值為(1+12%)(1+7%),∵這兩年GDP年平均增長率為x%,∴2018年的國內(nèi)生產(chǎn)總值也可表示為:,∴可列方程為:(1+12%)(1+7%)=.故選D.點睛:考查了由實際問題列一元二次方程的知識,當必須的量沒有時,應設其為1;注意2018年的國內(nèi)生產(chǎn)總值是在2017年的國內(nèi)生產(chǎn)總值的基礎上增加的,需先算出2016年的國內(nèi)生產(chǎn)總值.6、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點:簡單組合體的三視圖.7、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案。【詳解】直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。8、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關鍵是注意數(shù)形結(jié)合思想的應用.9、B【解析】

利用矩形的性質(zhì)以及結(jié)合角平分線的性質(zhì)分別求出AE,BE的長以及∠EBF的度數(shù),進而利用圖中陰影部分的面積=S-S-S,求出答案.【詳解】∵矩形ABCD的邊AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵點E是AD的中點,∴AE=ED=1,∴圖中陰影部分的面積=S?S?S=1×2?×1×1?故選B.【點睛】此題考查矩形的性質(zhì),扇形面積的計算,解題關鍵在于掌握運算公式10、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.11、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.12、C【解析】

解:根據(jù)定義,得∴解得:.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先利用除法法則變形,約分后通分并利用同分母分式的減法法則計算即可.【詳解】原式,

故答案為【點睛】本題考查了分式的混合運算,熟練掌握運算法則是解題的關鍵.14、1【解析】試題分析:由m與n為已知方程的解,利用根與系數(shù)的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數(shù)的關系.15、1.【解析】

試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).16、-.【解析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.17、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據(jù)相似三角形的性質(zhì)可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.18、(a+1)1.【解析】

原式提取公因式,計算即可得到結(jié)果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],

=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],

=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],

=…,

=(a+1)1.

故答案是:(a+1)1.【點睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1.5千米【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質(zhì)解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握運算法則20、(1)10750;(2);(3)最大利潤為10750元.【解析】

(1)根據(jù)“利潤=銷售總額-總成本”結(jié)合兩種T恤的銷售數(shù)量代入相關代數(shù)式進行求解即可;(2)根據(jù)題意,分兩種情況進行討論:①0<m<200;②200≤m≤400時,根據(jù)“利潤=銷售總額-總成本”即可求得各相關函數(shù)關系式;(3)求出(2)中各函數(shù)最大值,進行比較即可得到結(jié)論.【詳解】(1)∵甲種T恤進貨250件∴乙種T恤進貨量為:400-250=150件故由題意得,;(2)①②;故.(3)由題意,,①,,②,綜上,最大利潤為10750元.【點睛】本題考查了二次函數(shù)的應用,找出題中的等量關系以及根據(jù)題意確定二次函數(shù)的解析式是解題的關鍵.21、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=22、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.【解析】試題分析:(1)、首先設甲種材料每千克x元,乙種材料每千克y元,根據(jù)題意列出二元一次方程組得出答案;(2)、設生產(chǎn)B產(chǎn)品a件,則A產(chǎn)品(60-a)件,根據(jù)題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產(chǎn)成本w與a的函數(shù)關系式,根據(jù)函數(shù)的增減性得出答案.試題解析:(1)設甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料每千克35元.(2)生產(chǎn)B產(chǎn)品a件,生產(chǎn)A產(chǎn)品(60-a)件.依題意得:(25×4+35×1)(60-a)+(35×3+25×3)a≤10000a>38解得:∵a的值為非負整數(shù)∴a=39、40、41、42∴共有如下四種方案:A種21件,B種39件;A種20件,B種40件;A種19件,B種41件;A種18件,B種42件(3)、答:生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.設生產(chǎn)成本為W元,則W與a的關系式為:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500∵k=55>0∴W隨a增大而增大∴當a=39時,總成本最低.考點:二元一次方程組的應用、不等式組的應用、一次函數(shù)的應用.23、(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)見解析.【解析】

(1)①由題意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;②由題意得AB=AE=a1,AC=a1,則CE=a2=a1﹣a1=(﹣1)a1;③同上可知CF=CE=(-1)a1,F(xiàn)H=EF=a2,則CH=a3=CF﹣FH=(-1)2a1;④同理可得an=(-1)n-1a1;(2)根據(jù)題意畫圖即可.【詳解】解:(1)①斜邊和一條直角邊分別相等的兩個直角三角形全等;理由是:如圖1,在Rt△EAF和Rt△BAF中,∵,∴Rt△EAF≌Rt△BAF(HL);②∵四邊形ABCD是正方形,∴AB=BC=a1,∠ABC=90°,∴AC=a1,∵AE=AB=a1,∴CE=a2=a1﹣a1=(﹣1)a1;③∵四邊形CEFG是正方形,∴△CEF是等腰直角三角形,∴CF=CE=(-1)a1,∵FH=EF=a2,∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;④同理可得:an=(-1)n-1a1;故答案為①斜邊和一條直角邊分別相等的兩個直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)所畫正方形CHIJ見右圖.24、(1);(2)80米/分;(3)6分鐘【解析】

(1)根據(jù)圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,

(2)根據(jù)線段OA,求出甲的速度,根據(jù)圖示可知:乙在點B處追上甲,根據(jù)速度=路程÷時間,計算求值即可,

(3)根據(jù)圖示,求出二者相遇時與出發(fā)點的距離,進而求出與終點的距離,結(jié)合(2)的結(jié)果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間差即可所求答案.【詳解】(1)根據(jù)題意得:

設線段AB的表達式為:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即線段AB的表達式為:y=-20x+320(4≤x≤16),

(2)又線段OA可知:甲的速度為:=60(米/分),

乙的步行速度為:=80(米/分),

答:乙的步行速度為80米/分,

(3)在B處甲乙相遇時,與出發(fā)點的距離為:240+(16-4)×60=960(米),

與終點的距離為:2400-960=1440(米),

相遇后,到達終點甲所用的時間為:=24(分),

相遇后,到達終點乙所用的時間為:=18(分),

24-18=6(分),

答:乙比甲早6分鐘到達終點.【點睛】本題考查了一次函數(shù)的應用,正確掌握分析函數(shù)圖象是解題的關鍵.25、(1)證明見解析(2)13【解析】

(1)先根據(jù)同角的余角相等得到∠ACE=∠BCD,再結(jié)合等腰直角三角形的性質(zhì)即可證得結(jié)論;(2)根據(jù)全等三角形的性質(zhì)可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.【詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD是直角三角形【點睛】解答本題的關鍵是熟練掌握全等三角形的性質(zhì):全等三角形的對應邊相等、對應角相等.26、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論