![人工智能在神經(jīng)病理學(xué)中的應(yīng)用:基于深度學(xué)習(xí)的tau蛋白病變評估_第1頁](http://file4.renrendoc.com/view5/M01/28/39/wKhkGGYm7USAZbDWAALhmUJwiJw495.jpg)
![人工智能在神經(jīng)病理學(xué)中的應(yīng)用:基于深度學(xué)習(xí)的tau蛋白病變評估_第2頁](http://file4.renrendoc.com/view5/M01/28/39/wKhkGGYm7USAZbDWAALhmUJwiJw4952.jpg)
![人工智能在神經(jīng)病理學(xué)中的應(yīng)用:基于深度學(xué)習(xí)的tau蛋白病變評估_第3頁](http://file4.renrendoc.com/view5/M01/28/39/wKhkGGYm7USAZbDWAALhmUJwiJw4953.jpg)
![人工智能在神經(jīng)病理學(xué)中的應(yīng)用:基于深度學(xué)習(xí)的tau蛋白病變評估_第4頁](http://file4.renrendoc.com/view5/M01/28/39/wKhkGGYm7USAZbDWAALhmUJwiJw4954.jpg)
![人工智能在神經(jīng)病理學(xué)中的應(yīng)用:基于深度學(xué)習(xí)的tau蛋白病變評估_第5頁](http://file4.renrendoc.com/view5/M01/28/39/wKhkGGYm7USAZbDWAALhmUJwiJw4955.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
HHSPublicAccess
Authormanuscript
LabInvest.Authormanuscript;availableinPMC2020November24.
Publishedinfinaleditedformas:
LabInvest.2019July;99(7):1019–1029.doi:10.1038/s41374-019-0202-4.
Artificialintelligenceinneuropathology:deeplearning-basedassessmentoftauopathy
MaximSignaevsky1,2,3,MarcelPrastawa1,4,KurtFarrell1,2,3,NabilTabish1,2,3,ElenaBaldwin1,2,3,NataliaHan1,2,3,MeganA.Iida1,2,3,JohnKoll1,4,ClareBryce1,2,3,DushyantPurohit1,2,5,VahramHaroutunian5,6,AnnC.McKee7,8,9,10,11,ThorD.Stein8,9,10,11,Charles
L.WhiteIII12,JamieWalker12,TimothyE.Richardson12,RussellHanson1,2,3,MichaelJ.Donovan1,4,CarlosCordon-Cardo1,4,JackZeineh1,4,GerardoFernandez1,4,JohnF.Crary1,2,3
1DepartmentofPathology,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
2DepartmentofNeuroscience,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
3RonaldM.LoebCenterforAlzheimer’sDisease,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
4CenterforComputationalandSystemsPathology,IcahnSchoolofMedicineatMountSinai,NewYork,NY10025,USA
5DepartmentsofPsychiatryandNeuroscience,IcahnSchoolofMedicineatMountSinai,NewYork,NY10029,USA
6J.JamesPetersVAMedicalCenter,Bronx,NY,USA
7DepartmentofNeurology,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
8DepartmentofPathology,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
9Alzheimer’sDiseaseCenter,CTEProgram,BostonUniversitySchoolofMedicine,Boston,MA02118,USA
10MentalIllnessResearch,EducationandClinicalCenter,JamesJ.PetersVABostonHealthcareSystem,Boston,MA02130,USA
11DepartmentofVeteranAffairsMedicalCenter,Bedford,MA01730,USA
12NeuropathologyLaboratory,DepartmentofPathology,UTSouthwesternMedicalCenter,Dallas,TX75390,USA
Abstract
Accumulationofabnormaltauinneurofibrillarytangles(NFT)occursinAlzheimerdisease(AD)andaspectrumoftauopathies.Thesetauopathieshavediverseandoverlappingmorphological
JohnF.Crary,
john.crary@.
ConflictofinterestTheauthorsdeclarethattheyhavenoconflictofinterest.
Publisher’snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
LabInvest.Authormanuscript;availableinPMC2020November24.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page2
phenotypesthatobscureclassificationandquantitativeassessments.Recently,powerfulmachinelearning-basedapproacheshaveemerged,allowingtherecognitionandquantificationofpathologicalchangesfromdigitalimages.Here,weapplieddeeplearningtotheneuropathologicalassessmentofNFTinpostmortemhumanbraintissuetodevelopaclassifiercapableofrecognizingandquantifyingtauburden.Thehistopathologicalmaterialwasderivedfrom22autopsybrainsfrompatientswithtauopathies.Weusedacustomweb-basedinformaticsplatformintegratedwithanin-houseinformationmanagementsystemtomanagewholeslideimages(WSI)andhumanexpertannotationsasgroundtruth.Weutilizedfullyannotatedregionstotrainadeeplearningfullyconvolutionalneuralnetwork(FCN)implementedinPyTorchagainstthehumanexpertannotations.WefoundthatthedeeplearningframeworkiscapableofidentifyingandquantifyingNFTwitharangeofstainingintensitiesanddiversemorphologies.WithourFCNmodel,weachievedhighprecisionandrecallinnaiveWSIsemanticsegmentation,correctlyidentifyingtangleobjectsusingaSegNetmodeltrainedfor200epochs.OurFCNisefficientandwellsuitedforthepracticalapplicationofWSIswithaverageprocessingtimesof45minperWSIperGPU,enablingreliableandreproduciblelarge-scaledetectionoftangles.Wemeasuredperformanceontestdataof50pre-annotatedregionsoneightnaiveWSIacrossvarioustauopathies,resultingintherecall,precision,andanF1scoreof0.92,0.72,and0.81,respectively.MachinelearningisausefultoolforcomplexpathologicalassessmentofADandothertauopathies.Usingdeeplearningclassifiers,wehavethepotentialtointegratecell-andregion-specificannotationswithclinical,genetic,andmoleculardata,providingunbiaseddataforclinicopathologicalcorrelationsthatwillenhanceourknowledgeoftheneurodegeneration.
Introduction
Tau-relatedneurodegenerativedisorders,thetauopathies,compriseaheterogeneousgroupofdisorderswithaclinicalspectrumthatincludesprimarymotorsymptoms,movementdisorder,psychiatricdysfunction,andcognitiveimpairment[1].Histomorphologically,tauopathiesarecharacterizedbyintracellulardepositionofhyperphosphorylatedtauprotein.Variousisoformcompositions,morphology,andanatomicaldistributionsofintracellulartaurepresentdistinctdiagnosticfeaturesoftauopathies[1–3].Howpathologicaltaucausesneuronaldysfunctionanddegenerationisunclear.Severalmechanismshavebeenimplicated,includingbothgeneticandenvironmentalriskfactors,butmostcasesareidiopathic[1,3–5].Sporadictauopathies,suchasthevastmajorityofAlzheimerdisease(AD)andprogressivesupranuclearpalsy(PSP)cases,areassociatedwithcommongeneticriskalleles[1,3].Rarehighlypenetrantmutationsinthemicrotubule-associatedproteintaugeneareassociatedwithsomeformsoffrontotemporallobardegeneration[6].
Environmentalfactors,suchastraumaticbraininjuryinthecaseofchronictraumaticencephalopathy(CTE)orputativeneurotoxins,havealsobeenimplicated[7,8].
Pathologicalchangesintaumetabolismandpost-translationalmodificationsresultintheaccumulationoftoxicformsofmisfoldedtauaggregatesinneuronsandglialcellsinvariousbrainregions.Thesemisfoldedaggregatesareassociatedwithlossoffunctionandultimatelycelldeath[1,2].
Pathologicaltauformsinclusionsinneuronsandgliawithhistomorphologicallydistinguishablefeatures.Inneurons,thesetaketheformoftheclassicalflame-shaped
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page3
intracellularneurofibrillarytangles(NFTs),granularpre-NFTs,extracellular“ghost”tangles,ringtangles,andglobosetangles,amongothers[9].Inglia,thereisaspectrumofcharacteristichistomorphologicalformsthatarecommonlyassociatedwithspecificdiseases,includingglialplaquesofcorticobasaldegeneration,tuftedastrocytesofPSP,globularastroglialinclusionsinglobularglialtauopathy,ramifiedastrocytesofPickdisease,andthorn-shapedastrocytesaswellasgranularfuzzyastrocytesofaging-relatedtauastrogliopathy[9–11].Onerecentlyproposedclassificationschemecodifiessevenprimarytauopathies,andtwosecondarytauopathiesundertheumbrellaofneurodegenerativediseases,eachwithauniqueconstellationofregionalvulnerabilityandhistomorphologyoftauaggregatesthatdefinethem[1,2].Pathologicalaccumulationofhyperphosphorylatedtauisalsodescribedinvariousinfectious/post-infectious,metabolic,genetic/chromosomal,neoplastic/hamartomatous,andmyopathicdiseases[12].Giventhecomplexityandmorphologicaloverlap,diagnosingthesediseasesisachallengeforneuropathologists,andcommandsahighdegreeofexpertise.
Microscopicanalysisofstainedpostmortemsectionsbyatrainedexpertremainstheonlymodalityofconfirmatorydiagnosisoftauopathies.Despitethecontinuouseffortandimprovementsinthefield,theanalysesrequiredfordefinitivediagnosisandsubtypingofneurodegenerativediseasesremainhighlytime-andcost-consumingandaresubjecttoasubstantialdegreeofinter-andintra-observervariability,thuslackingoverallaccuracyandprecision.ThegoldstandardforhistomorphologicalassessmentoftauburdenandprogressioninAlzheimer’sdiseaseistheBraakstagingsystem,whichfocusesonthehierarchicalsequenceoftauaccumulation,butnotaquantitativemeasurementoftauburden,althoughdistributionandqualitativeNFTandthreaddensityarecorrelatedinthisstagingsystem[13].Despitethislimitation,theBraakstagingsystemhasbeenwidelyacceptedandadoptedfordecadesforitssimplicityandrobustness.Recentinterestindifferentialsemi-quantitativeassessmentoftauburdeninADisexemplifiedintheworkofJellinger[14].
Further,variousstagesofintracellularpathologictauaccumulationaredescribed(e.g.,pre-tangles,matureNFTs,andso-called“ghost”tangles—theremnantsofthetaufibrillaryscaffoldafterneuronalcelldeath;Fig.1).TheBraakstagingapproachdoesnotaddressthesefeatures,andthusinherentlylacksgranularityandquantification.Atthesametime,thefieldofdiagnosticneuropathologyisfacingchallengesrelatedtotheoveralllackofaccuracy,demandedbytheever-evolvingresearchandhealthcarestandards,anddiscrepancieswithclinicopathologicalcorrelations,witharecognizedneedtoaddresstheseissues[15].
Recently,therehasbeenanincreasinginterestindevelopingcomputationalmethodstoassistthepathologistinhistologicalanalysisviadigitalmicroscopicwholeslideimages(WSI).
Thisisprimarilyintendedtoreducethehumanerrorrateandbringaboutuniformityandaccuracyinpathologicaldiagnosis[16].Oneoftheapproachesthathasbeenanticipatedandsoughtafterfornearlyhalfacenturyisartificialintelligence(AI)[17,18].ThemostadvancedAI,calleddeeplearning(DL),isnowusedforcomplextaskssuchasspeechrecognition,languagetranslation,andimagerecognitionandinterpretation[19–21].Litjensetal.provideacomprehensivesurveyofpublishedstudiesontheuseofAI/DLinmedicalimageanalysisincludingWSIinpathology[17].Althoughmachinelearning-basedmethodshavehadlimitedapplicationindiagnosticpathologytodate,duetothevariabilityof
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page4
laboratorystandardsandoutcomes,andlackofreliablecomputer-backedplatforms,advanceshavebeenmaderecently.Therelevanceandpotentialofautomatedclassificationalgorithmsinsurgicalpathologyareexemplifiedbyitsapplicationtothehistologicgradingandprogressionofbreastandprostatecancer[17,22,23].Theseendeavorspaveawaytowardincreaseduseofmachinelearningforimprovingstratification,characterization,andquantificationformanyotherdiseaseprocesses,includingtheneuropathologicalassessmentoftauopathiesandADcohorts.Todate,nodatasetsderivedfromtheapplicationofmachine-basedlearningtoneurodegenerativediseaseareavailable.
WeaimedtodevelopandtestanovelDLalgorithmusingconvolutionalneuralnetworks
[20]thatwouldbeabletorecognize,classify,andquantifydiagnosticelementsoftauopathiesonWSIofpostmortemhumanbraintissuespecimensfrompatientswithtau-associatedneurodegenerativeconditionsinordertobetterstratifypatientsforclinicalandothercorrelativestudies(Fig.2).Inthisstudy,wefocusedonthedevelopment,validation,andtestingoftheDLalgorithmsforrecognitionandquantificationofNFTinanarrayoftauopathies.Thiswillallowustoapplythesetrainednetworksforlargerdisease-specificcohortsandtogeneratequantitativedataforclinicopathologicalcorrelations,aswellasformolecularandgeneticstudies,andenablefurtherdiagnosticandtherapeuticstrategies.
Materialsandmethods
Casematerial
De-identifiedautopsybraintissueswereobtainedfrom22representativeindividualswithAD,primaryage-relatedtauopathy(PART),PSP,andCTE[24](Table1).Thiscohortwasaconveniencesampleselectedbytheinvestigators.Weusedthefollowingselectioncriteria:
(i)clinical/pathological:well-characterizedclinicalcase,representativeofavarietyofpathognomonicdiagnostichistomorphologicalfeatures,andwithminimalorabsentneuropathologicalcomorbidities;(ii)technical:adequatelystainedtissuewithminimalornoartifacts.
Immunohistochemistry
Weusedstandardhistologicalcoronalsectionsfromformalin-fixedparaffin-embedded(FFPE)postmortembraintissue,representinghippocampalformationanddorsolateralprefrontalcortex.ForPARTandADcases,theimmunohistochemistry(IHC)ofallcaseswasperformedattheUniversityofTexasSouthwestern(UTSW)usinganti-phosphorylatedtauantibodies(AT8,Invitrogen,Waltham,MA)at1:200dilutionusingaLeicaBondIIIautomatedimmunostainer(LeicaMicrosystems,BuffaloGrove,IL).PSPandCTEcaseswereimmunostainedattheNeuropathologyResearchCoreatMountSinaiwithanti-phosphorylatedtauantibodies(AT8,Invitrogen)at1:2000dilutionusingaVentanaautostainer(RocheDiagnostics,Rotkreuz,Switzerland).
Slidedigitization
AllsectionsweredigitizedtoobtaindigitalWSI.ForPSPandCTE,WSIwereacquiredusingtheUltraFastScannerDigitalPathologySlideScanner(Philips,Amsterdam,Netherlands),whichscanshistologicalsamplesmountedonstandardglassslidesatx40
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page5
magnification(0.25μm/pixel)andsavesthemintheproprietaryiSyntaxformat.ForPARTandADcases,allslideswerescannedusinganAperioCSimagescanner(LeicaMicrosystems)atx20magnification(0.50μm/pixel)andsavedin.svsformat.AllimagesinproprietaryformatswerethenconvertedintoaGeoTIFFandstoredontheserverbehindthehospitalfirewallforinteractivedisplayovertheintranet.
Pathologicalannotations
WSIwereuploadedtothePreciseInformaticsPlatform(PIP)developedbytheCenterforComputationalandSystemsPathologyatMountSinai(MP,JK,JZ,andGF),whichallowsforthemanagementofthousandsofimageswithpathologistannotations.AuthorspreviouslyhaveappliedmachinelearningtoprostatecancerforGleasongrading[23,25],anditiscurrentlybeingusedinourCLIA-approvedlaboratory.Inaddition,PIPenablesgraphicsprocessingunit(GPU)-acceleratedDLforrapidvalidationandvisualizationofhowDLclassifiersperformindifferentscenarios(brainregions,celltypes,andstaining).
AnnotationsweregeneratedusingthePIPcollaborativeweb-baseduserinterfaceforoutlining(Fig.3).AnNFTwasoperationalizedasanobject,i.e.“foreground”,withcytoplasmicfinegranular,coarsegranular,orfibrillary/condensedAT8immunopositivitymorphologicallyconsistentwithaneuronbasedonthehistologicalcontext.Inaddition,extracellularAT8-positivestructuresmorphologicallyconsistentwiththeneuronalsomatodendriticcompartmentwerecountedasghosttangles.Partialneuriteslackingconnectiontothesomaorhillockwereexcluded.OtherAT8-positivestructuresincludingneuropilthreads,neuropilgranules/grains,andambiguousnon-neuronalphospho-taustainingwerecategorizedas“background”.Thetotalnumberof22WSIwasdividedinto14fortrainingandvalidation(modelselection),with8reservedasatestsetforperformanceevaluation.
Weconductedaconcordancestudytoassesstheinter-raterreliabilityusingacustominterfacewithinthePIPplatform.Atotalof471uniquepatchesofmixedhumanexpert-annotatedgroundtruthNFTsandAI-detectedfalsepositiveswereindependentlyassessedbythreeneuropathologists(MS,JFC,orCB)andcomparedusingaFleiss’kappastatistic.
Fullyconvolutionalnetwork(FCN)trainingandmodelselection
ThetrainingdatasetconsistedofWSIofsectionsfrom14subjects(Table1).Intotal,178representativerectangularregionsofinterests(ROI)wereselectedbytheinvestigatorsforanalysis.ThecriteriaforROIwereasfollows:(1)arepresentativecorticalareawithanadequateIHCofdiagnosticquality,(2)arepresentativevarietyofrecognizabledistincthistologicalAT8-stainedelements,and(3)intacttissuewithoutdetachmentorlargetissuefolds.AllNFTformswerecomputedtogether.ThetotalnumberofAT8-positiveNFTsofvariousmorphologiesrangingfrompre-tanglestomatureNFTsandghosttanglesusedforfullyconvolutionalneuralnetworktrainingandmodelselectionwas2221.Wefurtherextractedimagepatchesofsize512×512pixelsatx20bypartitioningtheROIs.Thetotalnumberofpatcheswas3177,comprising2414fromAperioscannedPARTandADWSIs,aswellas763fromPhilipsscannedCTEandPSPWSIs(Fig.4).Wefurtherassigned200patchesfromthisdatasettothevalidationset(formodelselection),withtheremainderusedfortraininganeuralnetworkclassifier.
Signaevskyetal. Page6
Fordeepconvolutionalneuralnetworkgeneration,weusedamodifiedversionofthefullyconvolutionalSegNetarchitecture(Fig.5)[26].Weusedthreespatialscales(numberofblockscontainingmultipleconvolutionlayersfollowedbyapoolinglayer)inthenetworktomodelthevisualcontextforNFT.Weightparametersfortheneuralnetworkaretheminimaforthepixel-wisebinarycrossentropyloss.Specifically,givenasetoftrainingexampleimagesIwithassociatedgroundtruthlabelsy,theFCNwithweightswgeneratespixelprobabilityateachlocationxforNFTobjectsaspj(x)=FCN(Ij(x),w),yieldingthe
followinglossfunction:
NL(w)=?∑
j=1
?
?∑··yj(x)logpi(x)+1?yj(x)log1?pi(x)
x
Thisdifferentiablelossfunctionisminimizedusingstochasticgradientdescent,whichperformsgradientupdatesonsmallbatchesofimages.Asetofgradientupdateiterationsthatutilizethecompletesetoftrainingimages,comprisingmultiplesmallbatches,iscalledanepoch.EachupdateiterationcanbecomputedefficientlyinparallelusingcommodityGPUhardware.WeusedthePyTorchsoftwarepackage(
)forbuildingourneuralnetworkmodel[27].
FCNtesting
WeappliedthetrainedSegNettoasetofeightnaiveWSIs,capturingarangeofscannerandstainingvariabilities.Forthese,weusedoneWSIforAD,twoforPART,threeforPSP,andtwoforCTE(Table1).ThetotalnumberoffullyannotatedrectangularROIoneightnaiveslidesrepresentingvariousnosologieswas50.ThetotalnumberofAT8positivestructuresamongthevariousmorphologieswas618.Positivefeatureswereusedtointerrogatenetworkperformance.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Results
First,wecomputedtheoptimalweightparametersforNFTdetectionin200epochs.Networkweightswereupdatedtoreducetrainingloss,and,ateachupdate,wecomputedthelossonvalidationdata,whichisseparatefromtrainingdata,toensurethatperformancebetweenthetwodoesnotdiverge.Incaseswheretraininglossisreducedandvalidationlossisincreased,theestimatednetworkweightswillresultinamodeloverfittedtothetrainingset.Itwillperformwellontrainingdatabutwillhavesuboptimalperformanceonnoveldata.Weperformeddataaugmentationateachepochonarandomsubsetoftrainingsamples,whichincludescontrastshiftandgeometricchanges(flipsandrotations).Thisaugmentationstepprovidesaricherexampleforournetworkandreducesthelikelihoodofoverfitting.ThetrainingprocessforadeepneuralnetworkfordetectingNFTbyoptimizationofthecross-entropylossfunctionisshown(Fig.6).Optimizationwasperformedusingstochasticgradientdescentonthetrainingdata;selectingthemodelthatminimizestheseparatevalidationdataensuresthatthenetworkmodelcanbegeneralizedandappliedtounseenWSI.Theseresultsindicatethatournetworkweightsareoptimalandarenotoverfittedtothetrainingdata.
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page7
Thenetworkachieveshighsensitivityforbothvalidationandtestdata,withalowerprecisiononthetestsetcomparedtothevalidationsetasourcurrentnetworkgeneratesmorefalsepositivesinthenaivetestWSIs(Figs.7,8).Onvalidation,wehaveachievedrecall,precision,andF1scoreof0.91,0.80,and0.86,respectively.Ontesting,weachievedoverallrecall,precision,andF1scoreof0.92,0.72,and0.81,respectively.TheoverallFCNperformancewashigherinthehigh-tau-burdenAD/PARTcohortcomparedtothelow-to-moderatetauburdenPSP/CTEcohort.TheFCNwastrainedusingdatawhereAD/PARTishigherinproportion(Table2).TheFleiss’kappaforinter-raterreliabilitybetweenneuropathologistsdeterminedonacollectionofpatchesconsistingofamixofnetwork-definedfalsepositivesandtruepositiveswas0.78(p-value<0.0001)(Table3).
WetrainedandtestedourFCNonvariousstainingconditions.Thetruepositive(TP),falsepositive(FP),andfalsenegative(FN)valuesinhighbackgroundWSI(AperioscannedADandPARTcasesfromUTSW)were329,98,and14,respectively.TheTP,FP,andFNvaluesinlowbackgroundWSI(PhilipsscannedPSPandCTEcasesfromMSSM)were244,122,and45,respectively.OverallFCNperformancerepresentedwithanF1scorewashigherinthehigh-backgroundhigh-tau-burdenAD/PARTcohort(0.85)comparedtothelow-backgroundandlow-to-moderatetau-burdenPSP/CTEcohort(0.75)(Table4).
Theobjectdetectiontimeforasinglewholeslideimagerangedfrom10minto2h(averaging45min)usingoneNVIDIATitanXpGPU,withperformancedependingonthedigitalscanresolutionandmagnification.FullyautomaticdetectionofNFTsatthisperformancelevelwillenablelarge-scaleanalysisofWSI.
Discussion
Inthisstudy,wepresentanovelmachinelearning-basedmethodusingautomatedqualitativeandquantitativeassessmentofNFTonIHC-stainedpreparations.Thevalueofareproducible,rapid,andunbiasedapproachtoaugmentlabor-intensivemanualcountingofhistopathologicalfeaturesiswellrecognized.ImplementationofDLisacompellingcomputationaltoolthatcanaddressthisgap.DLenablestherapiddevelopmentofnewalgorithmsandtoolsbutrequiresthecreationofcomputationalinfrastructureandlargeneuropathologicaldatasetscontainingrichlyvariedhigh-qualityannotations.ThisisgreatlyfacilitatedbyacollaborativeannotationplatformthatutilizespowerfulGPUhardwareandrapidfeedbackfromcomputationalalgorithms.Wehaveachievedasignificantmilestonebydevelopingaweb-basedplatformfordatamanagement,visualexploration,objectoutlining,multi-userreview,andevaluationofDLalgorithmresultsinWSI.OurNFTclassifiercurrentlytakesanaverageof45minto1htocomputationallyidentifyandcountNFTonanentireWSI,illustratingthefeasibilityofapplyingthisapproachtolargedatasets.Toourknowledge,thisisamongthefirstframeworksavailableforbuildingandevaluatingDLalgorithmsusinglarge-scaleimagedatainneuropathology.
Ourlong-termgoalistodevelopacomprehensiveplatformthatcanbeutilizedacrosscontexts(e.g.,basicresearchlaboratories,brainbanks,andclinicalneuropathologylaboratories)withvariabilityinsamplingprotocols,tissuesectionquality,stainingmethodology,andpathologicalfeatures.Hence,inourcurrentstudy,severalstepswere
AuthorManuscript
AuthorManuscript
AuthorManuscript
AuthorManuscript
Signaevskyetal. Page8
takentoincreasetheadaptabilityoftheneuralnetwork.Weusedmultiplebrainregions,aspectrumofdifferenttau-relateddiseases,avarietyofstainingconditions,andimagesacquiredontwodifferentslide-scanningplatforms.Thesestepshavelaidthegroundworktoprovideahighlyadaptableandrobusttangleclassifierforuseonimmunohistochemicallystainedsectionsthatcanbereadilyintegratedintoexistingclinicalneuropathologyandresearch.
DLalgorithmsarebasedonconceptsdevelopedinthe1940sandhavestartedbeingusedinmedicalimagingonlyrecently.UseofthesealgorithmsarebecomingpracticalduetothedevelopmentofGPUhardwareandtheyhavebeensuccessfullyappliedtosolvevariousimageclassification,detection,andsegmentationtasks[17,20].SeveralgroupsareapplyingsimilarAItechnologiestohistopathologyandhavecomparedthemtohumanexperts.Forexample,indermatologyandophthalmology,DLalgorithmswereabletooutperformahumanexpert[28,29].TherecentBreAstCancerHistologyimagesGrandChallengedemonstratedthatAIisabletopushforwardthestate-of-the-artaccuracy(87%)[22].
AnotherstudybyEstevaetal.utilizedapre-trainedGoogleNetInceptionv3CNNwith
~1.28millionpubliclyavailableimagesofskincancer[28].Thechallenge,however,liesintheacquisitionofasufficientnumberofrelevantgroundtruthexpertannotations.Further,evenwhenabodyofdataisannotatedbydomainexperts,labelnoisefromintra-andinter-observervariabilitycallingpresentsasignificantlimitingfactorindevelopingthealgorithms,andthereforearigorousqualitycontrolandexpertconsensusareneededfortrainingsets.Thus,publishedstudiesdemonstratethepromiseofAIinaidinganexpertinmakingmoreefficientdiagnoses.
OurSegNetfullyconvolutionalneuralnetworkhasreachedpracticallyusefullevelsofperformancebutcouldbeimproved.GiventhatwefocusedonNFT,performancewillbeenhancedwithlargerandmorevariedannotatedtrainingdatathatcaptureawiderrangeofneuropathologies(e.g.,amyloidplaques,Lewybodies,cerebrovasculardisease,etc.),stainingparameters,andanatomicalregions/sub-regions.Thelimitationsaremainlyattributedtofalsepositives,manyofwhichrepresenttauaccumulationinglialcells(datanotshown).WealsoobservedbetternetworkperformanceinAperio-scannedslides(ADandPARTcases),possiblyduetothelargeramountofannotationdatacomparedtoPhilips-scannedslides(CTEandPSPcases).Whilethenetworkperformanceismorerobustinnosologiesthatcontributedmoreannotationstothetrainingdataset,thiscanbeovercomebyincreasingthetotalnumberofgroundtruthannotationsandsaturatingthelearningcurve.
Infuturedisease-specificstudies,weplantouseexpandedneuroanatomicalsamplingpertinenttotargeteddiseaseentities.Forexample,itmaybehelpfultodifferentiateNFTfromdifferentbrainregionsordifferentsegmentsofoneregion,e.g.NFTsofhippocampusproperpyramidalneuronsandofdentategyrusgranuleneurons.Also,wecombinedallNFTsintoasinglecategory;however,thedifferentiationofpre-NFT,intracellularNFT,andghostNFTmayhelpimprovetheperformanceandprovidemoregranulardata.Finally,wefocusedourstudyonIHCstains,butabnormaltauandothe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年專家顧問聘用合同范文
- 2025年中醫(yī)藥大數(shù)據(jù)項(xiàng)目提案報告模板
- 2025年懷化市住宅租賃合同示范
- 2025年植樹用地租賃合同模板
- 2025年電熱設(shè)備:電熱管項(xiàng)目立項(xiàng)申請報告范文
- 2025年產(chǎn)權(quán)交易所項(xiàng)目轉(zhuǎn)讓服務(wù)協(xié)議
- 2025年中等教育助學(xué)貸款合同范本
- 2025年衛(wèi)生用品采購合同
- 2025年天然級復(fù)盆子酮項(xiàng)目申請報告模稿
- 2025年企業(yè)信息技術(shù)保密協(xié)議管理
- 2025年上半年中煤科工集團(tuán)北京華宇工程限公司中層干部公開招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 會議室墻面隔音板施工方案
- 特朗普就職演說全文與核心要點(diǎn)
- 北京市海淀區(qū)2024-2025學(xué)年五年級上冊語文期末試卷(有答案)
- 2024-2024年高考全國卷英語語法填空
- 辛棄疾生平簡介(課堂PPT)
- 人教版七年級英語下冊全冊英語單詞默寫直接打印
- 公共衛(wèi)生服務(wù)考核評分標(biāo)準(zhǔn)(新)
- 《乒乓球》體育課教案(全)
- 阻變隨機(jī)存儲器(RRAM)綜述(自己整理)
- 提高住房公積服務(wù)質(zhì)量打造住房公積金服務(wù)品牌
評論
0/150
提交評論