河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河南省南陽市第十三中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,中,E是BC的中點,設(shè),那么向量用向量表示為()A. B. C. D.2.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.3.如圖,正比例函數(shù)y=x與反比例函數(shù)y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當(dāng)y=x的函數(shù)值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>24.已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學(xué)的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結(jié)論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=135.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π6.在銀行存款準(zhǔn)備金不變的情況下,銀行的可貸款總量與存款準(zhǔn)備金率成反比例關(guān)系.當(dāng)存款準(zhǔn)備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準(zhǔn)備金率上調(diào)到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.357.下列計算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+18.﹣3的絕對值是()A.﹣3 B.3 C.- D.9.設(shè)x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或510.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.12.使有意義的的取值范圍是__________.13.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正確的是______.(填序號)14.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對的圓周角為__o.15.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.16.如圖,線段AB兩端點坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點坐標(biāo)分別為C(5,3)、D(3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點旋轉(zhuǎn)一個角度可得到另一條線段,請寫出旋轉(zhuǎn)中心的坐標(biāo)________.三、解答題(共8題,共72分)17.(8分)《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經(jīng)》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”18.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.19.(8分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.20.(8分)先化簡再求值:,其中,.21.(8分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.登山多長時間時,甲、乙兩人距地面的高度差為50米?22.(10分)如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.23.(12分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.24.如圖,某中學(xué)數(shù)學(xué)課外學(xué)習(xí)小組想測量教學(xué)樓的高度,組員小方在處仰望教學(xué)樓頂端處,測得,小方接著向教學(xué)樓方向前進到處,測得,已知,,.(1)求教學(xué)樓的高度;(2)求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.2、A【解析】

如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤3、D【解析】試題分析:觀察函數(shù)圖象得到當(dāng)﹣2<x<0或x>2時,正比例函數(shù)圖象都在反比例函數(shù)圖象上方,即有y=x的函數(shù)值大于y=4考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.數(shù)形結(jié)合思想的應(yīng)用.4、A【解析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點:1.平均數(shù);2.中位數(shù).5、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關(guān)鍵是先求出角度再用弧長公式進行計算.6、B【解析】設(shè)可貸款總量為y,存款準(zhǔn)備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當(dāng)時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.7、C【解析】

解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【點睛】本題考查合并同類項,同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關(guān)鍵.8、B【解析】

根據(jù)負(fù)數(shù)的絕對值是它的相反數(shù),可得出答案.【詳解】根據(jù)絕對值的性質(zhì)得:|-1|=1.故選B.【點睛】本題考查絕對值的性質(zhì),需要掌握非負(fù)數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù).9、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.10、B【解析】

根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】

根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個,第2個圖案中棋子的個數(shù)5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數(shù).【詳解】根據(jù)題意分析可得:第1個圖案中棋子的個數(shù)5個.第2個圖案中棋子的個數(shù)5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數(shù)為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規(guī)律.分析出一般數(shù)量關(guān)系是關(guān)鍵.12、【解析】

根據(jù)二次根式的被開方數(shù)為非負(fù)數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.【點睛】本題主要考查了二次根式的性質(zhì),熟練掌握相關(guān)概念是解題關(guān)鍵.13、①②④【解析】

①根據(jù)旋轉(zhuǎn)得到,對應(yīng)角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷②由旋轉(zhuǎn)得出AD=AF,∠DAE=∠EAF,及公共邊即可證明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE1+BF1=EF1,等量代換后判定④正確【詳解】由旋轉(zhuǎn),可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,結(jié)論①正確;②由旋轉(zhuǎn),可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),結(jié)論②正確;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,無法證出△ABE∽△ACD,結(jié)論③錯誤;④由旋轉(zhuǎn),可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,結(jié)論④正確.故答案為:①②④【點睛】本題考查了相似三角形的判定,全等三角形的判定與性質(zhì),勾股定理,熟練掌握定理是解題的關(guān)鍵14、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點,即在Rt△AOC中,OA=1,根據(jù)勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對,∵大角則弦AB所對的圓周角為或故答案為或15、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.16、或【解析】

分點A的對應(yīng)點為C或D兩種情況考慮:當(dāng)點A的對應(yīng)點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,點E即為旋轉(zhuǎn)中心;當(dāng)點A的對應(yīng)點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,點M即為旋轉(zhuǎn)中心此題得解.【詳解】當(dāng)點A的對應(yīng)點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,如圖1所示:點的坐標(biāo)為,B點的坐標(biāo)為,點的坐標(biāo)為;當(dāng)點A的對應(yīng)點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,如圖2所示:點的坐標(biāo)為,B點的坐標(biāo)為,點的坐標(biāo)為.綜上所述:這個旋轉(zhuǎn)中心的坐標(biāo)為或.故答案為或.【點睛】本題考查了坐標(biāo)與圖形變化中的旋轉(zhuǎn),根據(jù)給定點的坐標(biāo)找出旋轉(zhuǎn)中心的坐標(biāo)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、x=60【解析】

設(shè)有x個客人,根據(jù)題意列出方程,解出方程即可得到答案.【詳解】解:設(shè)有x個客人,則解得:x=60;∴有60個客人.【點睛】本題考查了由實際問題抽象出一元一次方程,找準(zhǔn)等量關(guān)系,正確列出一元一次方程是解題的關(guān)鍵.18、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標(biāo),即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設(shè)直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標(biāo)為m,點M在AC上,∴M點的坐標(biāo)為(m,).∵點P的橫坐標(biāo)為m,點P在拋物線上,∴點P的坐標(biāo)為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.19、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.20、8【解析】

原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算,合并得到最簡結(jié)果,將x與y的值代入計算即可求出值.【詳解】原式==,當(dāng),時,原式=【點睛】本題考查了整式的混合運算-化簡求值,涉及的知識有:完全平方公式、單項式乘以多項式、去括號法則以及合并同類項法則,熟練掌握公式及法則是解本題的關(guān)鍵.21、(1)10,30;(2)y=;(3)登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【解析】

(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×?xí)r間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×?xí)r間即可得出y關(guān)于x的函數(shù)關(guān)系;(3)當(dāng)乙未到終點時,找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可求出x值;當(dāng)乙到達終點時,用終點的高度﹣甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程,解之可求出x值.綜上即可得出結(jié)論.【詳解】(1)(300﹣100)÷20=10(米/分鐘),b=15÷1×2=30,故答案為10,30;(2)當(dāng)0≤x≤2時,y=15x;當(dāng)x≥2時,y=30+10×3(x﹣2)=30x﹣30,當(dāng)y=30x﹣30=300時,x=11,∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=;(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).當(dāng)10x+100﹣(30x﹣30)=50時,解得:x=4,當(dāng)30x﹣30﹣(10x+100)=50時,解得:x=9,當(dāng)300﹣(10x+100)=50時,解得:x=15,答:登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數(shù)的應(yīng)用以及解一元一次方程,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系列式計算;(2)根據(jù)高度=初始高度+速度×?xí)r間找出y關(guān)于x的函數(shù)關(guān)系式;(3)將兩函數(shù)關(guān)系式做差找出關(guān)于x的一元一次方程.22、(1)見解析;(2)見解析.【解析】

(1)由旋轉(zhuǎn)性質(zhì)可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結(jié)論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論